Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The growing interest in the study of natural or artificial nanoscale structures stabilized by a corrugated surface calls for specific models adapted to the awkward symmetry of such systems. In this work the field susceptibility of a system composed of a finite number of micro-systems interacting with a solid surface is derived from a Dyson's type equation. The many-body character of the interactions between each particle, including reflection with the solid surface, is taken into account by a self-consistent procedure. We show that the calculation of this susceptibility provides a good basis to obtain the van der Waals dispersion energy inside a finite line of physisorbed atoms. We also discuss the possibility of applying this method to study optical energy transfer in complex systems.