Physics Insight from Plasma Shaping of TCV Tokamak Plasmas - focus on Electron Heat Transport
Related publications (305)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Reinforcement learning (RL) has shown promising results for real-time control systems, including the domain of plasma magnetic control. However, there are still significant drawbacks compared to traditional feedback control approaches for magnetic confinem ...
Turbulence driven by small-scale instabilities results in strong heat and particle transport, which significantly shortens the confinement time and prevents the formation of a self-sustained plasma reaction in magnetic confinement devices. Control and poss ...
The ITER Electron Cyclotron Resonance Heating and Current Drive (ECRH&CD) system relies on 1 MW 170 GHz Gyrotrons to provide the mm-wave power needed for plasma heating, current drive, and magneto-hydrodynamic control. The design and modeling of the contro ...
Piscataway2024
The performance of magnetic confinement fusion devices, such as tokamaks, is strongly correlated to the phenomena that occur in the boundary region of the plasma core that faces the wall of the device. The dominant cross-field transport mechanisms from the ...
EPFL2024
This paper extends a 1D dynamic physics-based model of the scrape-off layer (SOL) plasma, DIV1D, to include the core SOL and possibly a second target. The extended model is benchmarked on 1D mapped SOLPS-ITER simulations to find input settings for DIV1D th ...
In this work, we study the impact of aspect ratio A = R 0 / r (the ratio of major radius R 0 to minor radius r) on the confinement benefits of negative triangularity (NT) plasma shaping. We use high-fidelity flux tube gyrokinetic GENE simulations and consi ...
The impact of electron cyclotron current drive (ECCD)-driven current on toroidicity-induced Alfven eigenmodes (TAEs) in experiments on the AUG tokamak is investigated numerically. The dynamical evolution of the plasma profiles and equilibria are modelled w ...
Bristol2024
, , , , , , , , , ,
Carbon impurity transport is studied in the TCV tokamak using a charge exchange recombination diagnostic. TCVs flexible shaping capabilities were exploited to extend previous impurity transport studies to negative triangularity (delta < 0). A practical way ...
Iop Publishing Ltd2024
, ,
Local gyrokinetic simulations are used to model turbulent transport for the first time in a representative high-performance plasma discharge projected for the new JT-60SA tokamak. The discharge features a double-null separatrix, 41 MW of combined neutral b ...
Bristol2024
, , , ,
Electron-cyclotron waves are a tool commonly used in tokamaks, in particular to drive current. Their ability to drive current in a very localized manner renders them an optimal tool for MHD mode mitigation. However, such applications require high accuracy ...