Comparison of Energy Minimization Methods for 3-D Brain Tissue Classification
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The ability to automatically find objects of interest in images is useful in the areas of compression, indexing and retrieval, re-targeting, and so on. There are two classes of such algorithms – those that find any object of interest with no prior knowledg ...
In this paper, we extend the generalized approximate message passing (G-AMP) approach, originally proposed for high-dimensional generalized-linear regression in the context of compressive sensing, to the generalized-bilinear case. In Part I of this two-par ...
Milestones in sparse signal reconstruction and compressive sensing can be understood in a probabilistic Bayesian context, fusing underdetermined measurements with knowledge about low level signal properties in the posterior distribution, which is maximized ...
Institute of Electrical and Electronics Engineers2010
The framework of graphical models is a cornerstone of applied Statistics, allowing for an intuitive graphical specification of the main features of a model, and providing a basis for general Bayesian inference computations though belief propagation (BP). I ...
Estimation of a vector from quantized linear measurements is a common problem for which simple linear techniques are suboptimal—sometimes greatly so. This paper develops message-passing de-quantization (MPDQ) algorithms for minimum mean-squared error estim ...
We propose a working set based approximate subgradient descent algorithm to minimize the margin-sensitive hinge loss arising from the soft constraints in max-margin learning frameworks, such as the structured SVM. We focus on the setting of general graphic ...
Most state-of-the-art approaches to image segmentation formulate the problem using Conditional Random Fields. These models typically include a unary term and a pairwise term, whose parameters must be carefully chosen for optimal performance. Recently, stru ...
The objective of this thesis is to develop probabilistic graphical models for analyzing human interaction in meetings based on multimodel cues. We use meeting as a study case of human interactions since research shows that high complexity information is mo ...
We formulate a model for multi-class object detection in a multi-camera environment. From our knowledge, this is the first time that this problem is addressed taken into account different object classes simultaneously. Given several images of the scene tak ...
Inference of Markov random field images segmentation models is usually performed using iterative methods which adapt the well-known expectation-maximization (EM) algorithm for independent mixture models. However, some of these adaptations are ad-hoc and ma ...