Publication

The effect of different functional groups on the ligand-promoted dissolution of NiO and other oxide minerals

Christian Ludwig
1996
Journal paper
Abstract

Sets of homologous ligands were used to probe the dissolution of oxide minerals through experiments on bunsenite (NiO). The ligand sets have primary amine, hydroxyl, and carboxyl functional groups and form five-membered, bidentate, ring complexes at the mineral surface. A set of ligands that has only two metal-coordinating functional groups (ox, en, gly) was compared with a set of larger, but similar, ligands (nta, tren) that link three sets of functional groups with a tertiary amine. Experiments were also conducted with hydroxyl ligands (tea), ammonia (NH3), and ligands containing ring nitrogen (pic). The dissolution rates of NiO(s) in the presence of these ligands established close consistency between metal detachment from a dissolving surface and the mechanisms of ligand exchange around dissolved Ni(II)-ligand complexes. The solution pH, however, is an important complicating factor. Metals compete with protons for ligand sites and this protonation changes the ligand structure and reactivity. Several types of protonation lead to different species at the mineral surface and this greatly complicates the rate laws for dissolution. The speciation will be particularly complicated for large-molecular-weight ligands with functional groups that protonate over a wide pH range. In terms of a rate law, protonation of ligand functional groups at the surface is distinct from protonation of structural oxygens at the mineral surface. These are different surface complexes (species) for the purpose of the rate law.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.