Lanczos algorithmThe Lanczos algorithm is an iterative method devised by Cornelius Lanczos that is an adaptation of power methods to find the "most useful" (tending towards extreme highest/lowest) eigenvalues and eigenvectors of an Hermitian matrix, where is often but not necessarily much smaller than . Although computationally efficient in principle, the method as initially formulated was not useful, due to its numerical instability. In 1970, Ojalvo and Newman showed how to make the method numerically stable and applied it to the solution of very large engineering structures subjected to dynamic loading.
Maximum entropy probability distributionIn statistics and information theory, a maximum entropy probability distribution has entropy that is at least as great as that of all other members of a specified class of probability distributions. According to the principle of maximum entropy, if nothing is known about a distribution except that it belongs to a certain class (usually defined in terms of specified properties or measures), then the distribution with the largest entropy should be chosen as the least-informative default.
Valuation using multiplesIn economics, valuation using multiples, or "relative valuation", is a process that consists of: identifying comparable assets (the peer group) and obtaining market values for these assets. converting these market values into standardized values relative to a key statistic, since the absolute prices cannot be compared. This process of standardizing creates valuation multiples. applying the valuation multiple to the key statistic of the asset being valued, controlling for any differences between asset and the peer group that might affect the multiple.
Law of total expectationThe proposition in probability theory known as the law of total expectation, the law of iterated expectations (LIE), Adam's law, the tower rule, and the smoothing theorem, among other names, states that if is a random variable whose expected value is defined, and is any random variable on the same probability space, then i.e., the expected value of the conditional expected value of given is the same as the expected value of .
Tree automatonA tree automaton is a type of state machine. Tree automata deal with tree structures, rather than the strings of more conventional state machines. The following article deals with branching tree automata, which correspond to regular languages of trees. As with classical automata, finite tree automata (FTA) can be either a deterministic automaton or not. According to how the automaton processes the input tree, finite tree automata can be of two types: (a) bottom up, (b) top down.
Stochastic cellular automatonStochastic cellular automata or probabilistic cellular automata (PCA) or random cellular automata or locally interacting Markov chains are an important extension of cellular automaton. Cellular automata are a discrete-time dynamical system of interacting entities, whose state is discrete. The state of the collection of entities is updated at each discrete time according to some simple homogeneous rule. All entities' states are updated in parallel or synchronously.
Free particleIn physics, a free particle is a particle that, in some sense, is not bound by an external force, or equivalently not in a region where its potential energy varies. In classical physics, this means the particle is present in a "field-free" space. In quantum mechanics, it means the particle is in a region of uniform potential, usually set to zero in the region of interest since the potential can be arbitrarily set to zero at any point in space. The classical free particle is characterized by a fixed velocity v.
Law of total varianceIn probability theory, the law of total variance or variance decomposition formula or conditional variance formulas or law of iterated variances also known as Eve's law, states that if and are random variables on the same probability space, and the variance of is finite, then In language perhaps better known to statisticians than to probability theorists, the two terms are the "unexplained" and the "explained" components of the variance respectively (cf. fraction of variance unexplained, explained variation).
Transition systemIn theoretical computer science, a transition system is a concept used in the study of computation. It is used to describe the potential behavior of discrete systems. It consists of states and transitions between states, which may be labeled with labels chosen from a set; the same label may appear on more than one transition. If the label set is a singleton, the system is essentially unlabeled, and a simpler definition that omits the labels is possible.