Publication

MULTI-BUNCH EFFECT OF RESISTIVEWALL IN THE CLIC BDS

Abstract

Wake fields in the CLIC Beam Delivery System (BDS) can cause severe single or multi-bunch effects leading to luminosity loss. The main contributors in the BDS are geometric and resistive wall wake fields of the collimators and resistive wall wakes of the beam pipe. The present work focuses only on the multi-bunch effects from resistive wall. Using particle tracking with wake fields through the BDS, we have established the aperture radius, above which the effect of the wake fields becomes negligible. Our simulations were later extended to include a realistic aperture model along the BDS as well as the collimators. The two cases of 3 TeV and 500 GeV have been examined.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (18)
Hypergiant
A hypergiant (luminosity class 0 or Ia+) is a very rare type of star that has an extremely high luminosity, mass, size and mass loss because of its extreme stellar winds. The term hypergiant is defined as luminosity class 0 (zero) in the MKK system. However, this is rarely seen in literature or in published spectral classifications, except for specific well-defined groups such as the yellow hypergiants, RSG (red supergiants), or blue B(e) supergiants with emission spectra.
Free-electron laser
A free-electron laser (FEL) is a (fourth generation) light source producing extremely brilliant and short pulses of radiation. An FEL functions and behaves in many ways like a laser, but instead of using stimulated emission from atomic or molecular excitations, it employs relativistic electrons as a gain medium. Radiation is generated by a bunch of electrons passing through a magnetic structure (called undulator or wiggler).
Supergiant
Supergiants are among the most massive and most luminous stars. Supergiant stars occupy the top region of the Hertzsprung–Russell diagram with absolute visual magnitudes between about −3 and −8. The temperature range of supergiant stars spans from about 3,400 K to over 20,000 K. The title supergiant, as applied to a star, does not have a single concrete definition. The term giant star was first coined by Hertzsprung when it became apparent that the majority of stars fell into two distinct regions of the Hertzsprung–Russell diagram.
Show more
Related publications (5)

Red Supergiants as Cosmic Abundance Probes: Massive Star Clusters in M83 and the Mass-Metallicity Relation of Nearby Galaxies

Carmela Lardo

We present an abundance analysis of seven super star clusters in the disk of M83. The near-infrared spectra of these clusters are dominated by red supergiants, and the spectral similarity in the J-band of such stars at uniform metallicity means that the in ...
Iop Publishing Ltd2017

Searching for globular cluster-like abundance patterns in young massive clusters - II. Results from the Antennae galaxies

Carmela Lardo

The presence of multiple populations (MPs) with distinctive light element abundances is a widespread phenomenon in clusters older than 6 Gyr. Clusters with masses, luminosities, and sizes comparable to those of ancient globulars are still forming today. No ...
Oxford Univ Press2017

Gaia Data Release 1 Open cluster astrometry: performance, limitations, and future prospects

Stephan Morgenthaler, Mikaël Martino, Shuangqing Liao

Context. The first Gaia Data Release contains the Tycho-Gaia Astrometric Solution (TGAS). This is a subset of about 2 million stars for which, besides the position and photometry, the proper motion and parallax are calculated using Hipparcos and Tycho-2 po ...
Edp Sciences S A2017
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.