Asymptotics and analytic modes for the wave equation in similarity coordinates
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this paper we propose a dynamical low-rank strategy for the approximation of second order wave equations with random parameters. The governing equation is rewritten in Hamiltonian form and the approximate solution is expanded over a set of 2S dynamical ...
I will try to explain, without going into too much detail, how one can
consider a non-linear wave equation as a dynamical system and what it brings to the study of its
solutions. We begin by considering our model case, the non-linear Klein-Gordon equation ...
The aim of this paper is to obtain a posteriori error bounds of optimal order in time and space for the linear second-order wave equation discretized by the Newmark scheme in time and the finite element method in space. An error estimate is derived in the ...
It is a fundamental question in disease modeling how the initial seeding of an epidemic, spreading over a network, determines its final outcome. One important goal has been to find the seed configuration, which infects the most individuals. Although the id ...
We show that the finite time type II blow up solutions for the energy critical nonlinear wave equation [ \Box u = -u^5 ] on R3+1 constructed in [28], [27] are stable along a co-dimension three manifold of radial data perturbations in a suit ...
This brief proposes an analytical approach to model the DC electrical behavior of extremely narrow cylindrical junctionless nanowire field-effect transistors (JL-NW-FETs). The model includes explicit expressions, taking into account the first-order perturb ...
We study the one-dimensional discrete Schrödinger operator with the skew-shift potential 2λcos(2π((2j)ω+jy+x)). This potential is long conjectured to behave like a random one, i.e., it is expected to produce ...
In this paper, we study local well-posedness and orbital stability of standing waves for a singularly perturbed one-dimensional nonlinear Klein-Gordon equation. We first establish local well-posedness of the Cauchy problem by a fixed point argument. Unlike ...
Families of energy operators and generalized energy operators have recently been introduced in the definition of the solutions of linear Partial Differential Equations (PDEs) with a particular application to the wave equation [ 15]. To do so, the author ha ...
An accurate solution of the wave equation at a fluid-solid interface requires a correct implementation of the boundary condition. Boundary conditions at acousto-elastic interface require continuity of the normal component of particle velocity and traction, ...