Python (programming language)Python is a high-level, general-purpose programming language. Its design philosophy emphasizes code readability with the use of significant indentation. Python is dynamically typed and garbage-collected. It supports multiple programming paradigms, including structured (particularly procedural), object-oriented and functional programming. It is often described as a "batteries included" language due to its comprehensive standard library.
POSIXThe Portable Operating System Interface (POSIX; IPAˈpɒz.ɪks) is a family of standards specified by the IEEE Computer Society for maintaining compatibility between operating systems. POSIX defines both the system and user-level application programming interfaces (APIs), along with command line shells and utility interfaces, for software compatibility (portability) with variants of Unix and other operating systems. POSIX is also a trademark of the IEEE. POSIX is intended to be used by both application and system developers.
Symbolic linkIn computing, a symbolic link (also symlink or soft link) is a file whose purpose is to point to a file or directory (called the "target") by specifying a path thereto. Symbolic links are supported by POSIX and by most Unix-like operating systems, such as FreeBSD, Linux, and macOS. Limited support also exists in Windows 7 and Windows Vista, and to some degree in Windows 2000 and Windows XP in the form of shortcut files. on IBM 7090 had files linked by name in 1963.
Chapel (programming language)Chapel, the Cascade High Productivity Language, is a parallel programming language that was developed by Cray, and later by Hewlett Packard Enterprise which acquired Cray. It was being developed as part of the Cray Cascade project, a participant in DARPA's High Productivity Computing Systems (HPCS) program, which had the goal of increasing supercomputer productivity by 2010. It is being developed as an open source project, under version 2 of the Apache license. The Chapel compiler is written in C and C++ (C++14).
Embarrassingly parallelIn parallel computing, an embarrassingly parallel workload or problem (also called embarrassingly parallelizable, perfectly parallel, delightfully parallel or pleasingly parallel) is one where little or no effort is needed to separate the problem into a number of parallel tasks. This is often the case where there is little or no dependency or need for communication between those parallel tasks, or for results between them. Thus, these are different from distributed computing problems that need communication between tasks, especially communication of intermediate results.
Global interpreter lockA global interpreter lock (GIL) is a mechanism used in computer-language interpreters to synchronize the execution of threads so that only one native thread (per process) can execute at a time. An interpreter that uses GIL always allows exactly one thread to execute at a time, even if run on a multi-core processor. Some popular interpreters that have GIL are CPython and Ruby MRI. A global interpreter lock (GIL) is a mutual-exclusion lock held by a programming language interpreter thread to avoid sharing code that is not thread-safe with other threads.
Python syntax and semanticsThe syntax of the Python programming language is the set of rules that defines how a Python program will be written and interpreted (by both the runtime system and by human readers). The Python language has many similarities to Perl, C, and Java. However, there are some definite differences between the languages. It supports multiple programming paradigms, including structured, object-oriented programming, and functional programming, and boasts a dynamic type system and automatic memory management.
Multithreading (computer architecture)In computer architecture, multithreading is the ability of a central processing unit (CPU) (or a single core in a multi-core processor) to provide multiple threads of execution concurrently, supported by the operating system. This approach differs from multiprocessing. In a multithreaded application, the threads share the resources of a single or multiple cores, which include the computing units, the CPU caches, and the translation lookaside buffer (TLB).
Symbolic artificial intelligenceIn artificial intelligence, symbolic artificial intelligence is the term for the collection of all methods in artificial intelligence research that are based on high-level symbolic (human-readable) representations of problems, logic and search. Symbolic AI used tools such as logic programming, production rules, semantic nets and frames, and it developed applications such as knowledge-based systems (in particular, expert systems), symbolic mathematics, automated theorem provers, ontologies, the semantic web, and automated planning and scheduling systems.
Interpreter (computing)In computer science, an interpreter is a computer program that directly executes instructions written in a programming or scripting language, without requiring them previously to have been compiled into a machine language program. An interpreter generally uses one of the following strategies for program execution: Parse the source code and perform its behavior directly; Translate source code into some efficient intermediate representation or object code and immediately execute that; Explicitly execute stored precompiled bytecode made by a compiler and matched with the interpreter Virtual Machine.