ThermodynamicsThermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of thermodynamics which convey a quantitative description using measurable macroscopic physical quantities, but may be explained in terms of microscopic constituents by statistical mechanics.
Primary energyPrimary energy (PE) is the energy found in nature that has not been subjected to any human engineered conversion process. It encompasses energy contained in raw fuels and other forms of energy, including waste, received as input to a system. Primary energy can be non-renewable or renewable. Primary energy is used in energy statistics in the compilation of energy balances, as well as in the field of energetics. In energetics, a primary energy source (PES) refers to the energy forms required by the energy sector to generate the supply of energy carriers used by human society.
Laws of thermodynamicsThe laws of thermodynamics are a set of scientific laws which define a group of physical quantities, such as temperature, energy, and entropy, that characterize thermodynamic systems in thermodynamic equilibrium. The laws also use various parameters for thermodynamic processes, such as thermodynamic work and heat, and establish relationships between them. They state empirical facts that form a basis of precluding the possibility of certain phenomena, such as perpetual motion.
Chemical thermodynamicsChemical thermodynamics is the study of the interrelation of heat and work with chemical reactions or with physical changes of state within the confines of the laws of thermodynamics. Chemical thermodynamics involves not only laboratory measurements of various thermodynamic properties, but also the application of mathematical methods to the study of chemical questions and the spontaneity of processes. The structure of chemical thermodynamics is based on the first two laws of thermodynamics.
Non-equilibrium thermodynamicsNon-equilibrium thermodynamics is a branch of thermodynamics that deals with physical systems that are not in thermodynamic equilibrium but can be described in terms of macroscopic quantities (non-equilibrium state variables) that represent an extrapolation of the variables used to specify the system in thermodynamic equilibrium. Non-equilibrium thermodynamics is concerned with transport processes and with the rates of chemical reactions.
Second law of thermodynamicsThe second law of thermodynamics is a physical law based on universal experience concerning heat and energy interconversions. One simple statement of the law is that heat always moves from hotter objects to colder objects (or "downhill"), unless energy in some form is supplied to reverse the direction of heat flow. Another definition is: "Not all heat energy can be converted into work in a cyclic process." The second law of thermodynamics in other versions establishes the concept of entropy as a physical property of a thermodynamic system.
First law of thermodynamicsThe first law of thermodynamics is a formulation of the law of conservation of energy, adapted for thermodynamic processes. A simple formulation is: "The total energy in a system remains constant, although it may be converted from one form to another." Another common phrasing is that "energy can neither be created nor destroyed". While there are many subtleties and implications that may be more precisely captured in more complex formulations, this is the essential principle of the First Law.
Quantum thermodynamicsQuantum thermodynamics is the study of the relations between two independent physical theories: thermodynamics and quantum mechanics. The two independent theories address the physical phenomena of light and matter. In 1905, Albert Einstein argued that the requirement of consistency between thermodynamics and electromagnetism leads to the conclusion that light is quantized obtaining the relation . This paper is the dawn of quantum theory. In a few decades quantum theory became established with an independent set of rules.
Ocean thermal energy conversionOcean Thermal Energy Conversion (OTEC) uses the ocean thermal gradient between cooler deep and warmer shallow or surface seawaters to run a heat engine and produce useful work, usually in the form of electricity. OTEC can operate with a very high capacity factor and so can operate in base load mode. The denser cold water masses, formed by ocean surface water interaction with cold atmosphere in quite specific areas of the North Atlantic and the Southern Ocean, sink into the deep sea basins and spread in entire deep ocean by the thermohaline circulation.
Onsager reciprocal relationsIn thermodynamics, the Onsager reciprocal relations express the equality of certain ratios between flows and forces in thermodynamic systems out of equilibrium, but where a notion of local equilibrium exists. "Reciprocal relations" occur between different pairs of forces and flows in a variety of physical systems. For example, consider fluid systems described in terms of temperature, matter density, and pressure.