Publication

Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms

Abstract

Accurate prediction of atmospheric boundary layer (ABL) flow and its interactions with wind turbines and wind farms is critical for optimizing the design (turbine siting) of wind energy projects. Large-eddy simulation (LES) can potentially provide the kind of high-resolution spatial and temporal information needed to maximize wind energy production and minimize fatigue loads in wind farms. However, the accuracy of LESs of ABL flow with wind turbines hinges on our ability to parameterize subgrid-scale (SGS) turbulent fluxes as well as turbine-induced forces. This paper focuses on recent research efforts to develop and validate an LES framework for wind energy applications. SGS fluxes are parameterized using tuning-free Lagrangian scale-dependent dynamic models. These models optimize the local value of the model coefficients based on the dynamics of the resolved scales. The turbine-induced forces (e.g., thrust, lift and drag) are parameterized using two types of models: actuator-disk models that distribute the force loading over the rotor disk, and actuator-line models that distribute the forces along lines that follow the position of the blades. Simulation results are compared to wind-tunnel measurements collected with hot-wire anemometry in the wake of a miniature three-blade wind turbine placed in a boundary layer flow. In general, the characteristics of the turbine wakes simulated with the proposed LES framework are in good agreement with the measurements in the far-wake region. Near the turbine, up to about five rotor diameters downwind, the best performance is obtained with turbine models that induce wake-flow rotation and account for the non-uniformity of the turbine-induced forces. Finally, the LES framework is used to simulate atmospheric boundary-layer flow through an operational wind farm. (C) 2011 Elsevier Ltd. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (32)
Wind turbine
A wind turbine is a device that converts the kinetic energy of wind into electrical energy. , hundreds of thousands of large turbines, in installations known as wind farms, were generating over 650 gigawatts of power, with 60 GW added each year. Wind turbines are an increasingly important source of intermittent renewable energy, and are used in many countries to lower energy costs and reduce reliance on fossil fuels.
Floating wind turbine
A floating wind turbine is an offshore wind turbine mounted on a floating structure that allows the turbine to generate electricity in water depths where fixed-foundation turbines are not feasible. Floating wind farms have the potential to significantly increase the sea area available for offshore wind farms, especially in countries with limited shallow waters, such as Japan, France and US West coast. Locating wind farms further offshore can also reduce visual pollution, provide better accommodation for fishing and shipping lanes, and reach stronger and more consistent winds.
Wind farm
A wind farm or wind park, also called a wind power station or wind power plant, is a group of wind turbines in the same location used to produce electricity. Wind farms vary in size from a small number of turbines to several hundred wind turbines covering an extensive area. Wind farms can be either onshore or offshore. Many of the largest operational onshore wind farms are located in China, India, and the United States. For example, the largest wind farm in the world, Gansu Wind Farm in China had a capacity of over 6,000 MW by 2012, with a goal of 20,000 MW by 2020.
Show more
Related publications (107)

Towards an improved understanding of wind turbine wakes in complex terrain

Arslan Salim Dar

In this thesis, we explored the effect of certain terrain-induced flow phenomena on the development of wind turbines sited in complex terrain. A combined experimental and analytical approach is used to study wind turbine wakes in different types of complex ...
EPFL2024

Power performance of a model floating wind turbine subjected to cyclic pitch motion: A wind tunnel study

Fernando Porté Agel, Guiyue Duan, Daniele Gattari

Offshore floating wind turbines (OFWTs) are becoming increasingly popular due to their ability to exploit deep-sea wind resources. However, since wind turbines are installed on floaters instead of solid foundations, the dynamic response of an OFWT due to ...
2024

Dynamic stall characterisation and control for vertical-axis wind turbines

Sébastien Le Fouest

According to the International Energy Agency, the global net-zero emissions objective requires the installed wind power capacity to increase 11-fold between 2020 and 2050. The scientific community has recently voiced concerns about the logistic feasibility ...
EPFL2023
Show more
Related MOOCs (7)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.