Publication

An improved substructural identification strategy for large structural systems

Ngoc Thanh Trinh
2011
Journal paper
Abstract

To identify physical parameters of a large structural system, the computational challenges in dealing with a large number of unknowns are formidable. A divide-and-conquer approach is often required to partition the structural system into many substructures, each with much lesser unknowns for more accurate and efficient identification. Furthermore, in view of the ill-conditioned nature of inverse analysis, it is highly beneficial to adopt nongradient-based search methods such as genetic algorithm (GA). To this end, this paper presents a GA-based substructural identification strategy for large structural systems. As compared with some recent work on substructural identification, the proposed strategy presents two significant improvements: (i) the use of acceleration measurement to directly account for interaction between substructures without approximation of interface force; and (ii) the use of an improved identification method based on multi-feature GA. In numerical simulations, the mass, damping, and stiffness parameters of a 100-storey shear building, involving 202 unknowns, are identified with very good accuracy (mean error of less than 3%) based on incomplete acceleration measurements with 10% noise. In addition, an experimental study on a 10-storey small-scale steel frame further validates the superior performance of the proposed strategy over complete structural identification.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.