Robust Bayesian reinforcement learning through tight lower bounds
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In the past few years, Machine Learning (ML) techniques have ushered in a paradigm shift, allowing the harnessing of ever more abundant sources of data to automate complex tasks. The technical workhorse behind these important breakthroughs arguably lies in ...
Modern computing has enhanced our understanding of how social interactions shape collective behaviour in animal societies. Although analytical models dominate in studying collective behaviour, this study introduces a deep learning model to assess social in ...
In this thesis we explore the applications of projective geometry, a mathematical theory of the relation between 3D scenes and their 2D images, in modern learning-based computer vision systems. This is an interesting research question which contradicts the ...
In this thesis, we study two closely related directions: robustness and generalization in modern deep learning. Deep learning models based on empirical risk minimization are known to be often non-robust to small, worst-case perturbations known as adversari ...
Human babies have a natural desire to interact with new toys and objects, through which they learn how the world around them works, e.g., that glass shatters when dropped, but a rubber ball does not. When their predictions are proven incorrect, such as whe ...
Machine learning (ML) enables artificial intelligent (AI) agents to learn autonomously from data obtained from their environment to perform tasks. Modern ML systems have proven to be extremely effective, reaching or even exceeding human intelligence.Althou ...
The ability to reason, plan and solve highly abstract problems is a hallmark of human intelligence. Recent advancements in artificial intelligence, propelled by deep neural networks, have revolutionized disciplines like computer vision and natural language ...
Distributed learning is the key for enabling training of modern large-scale machine learning models, through parallelising the learning process. Collaborative learning is essential for learning from privacy-sensitive data that is distributed across various ...
Epilepsy, a major neurological disease, requires careful diagnosis and treatment. However, the detection of epileptic seizures remains a significant challenge. Current clinical practice relies on expert analysis of EEG signals, a process that is time-consu ...
Reinforcement learning (RL) is crucial for learning to adapt to new environments. In RL, the prediction error is an important component that compares the expected and actual rewards. Dopamine plays a critical role in encoding these prediction errors. In my ...