Publication

Ultrafast Visible and Ultraviolet Fluorescence Studies of Molecular and Biological Sytems in Solution

Olivier Christian Bräm
2011
EPFL thesis
Abstract

A wide variety of physical and chemical processes at the molecular level, as charge or energy transfer, solvation, electronic as well as vibrational relaxation, is at the origin of the biological functionality of proteins. The work reported in this thesis is devoted to the study of these molecular dynamics in different chromophore systems. More specifically, this study is focused on the role of these dynamics in the ultrafast photophysics and photochemistry of haemoproteins. This important class of proteins has been widely studied through various spectroscopic techniques, in order to understand their functionality. These proteins contain several chromophore moieties, among which one aminoacid residue, Tryptophan, and the haem prosthetic group, which are of particular interest in this work. While Tryptophan is used as a probe of the local environment via intermolecular relaxation dynamics, we investigated the role of haem intramolecular dynamics on the protein functionality. While different kind of ultrafast spectroscopic techniques are indicated to tackle these issues, like pump probe or photon-echo peak shift experiments, we choose a different approach to probe directly the energetic relaxation, which consists in following the ultrafast changes in the photoluminescence spectrum. The dynamics are then extracted from the spectral evolution of the emission. With this purpose, we implemented a fluorescence up-conversion set-up, which allows us resolving temporally and spectrally the photoluminescence of the sample under investigation, excited with an ultrashort light pulse, and with a temporal resolution on the femtosecond timescale. The thesis is structured in 9 chapters. Chapter 1 resumes the theoretical background required for the interpretation of the experimental results. Chapter 2 describes the photophysical properties of the different systems investigated. Chapter 3 presents the experimental technique of fluorescence up-conversion, used to achieve broadband femtosecond detection of photoluminescence. In Chapter 4, we present a study on the role of ultrafast vibrational and structural dynamics on the time-resolved fluorescence spectra from two UV dyes. The measurements allow us exploring the capabilities of the set-up in revealing subtle relaxation dynamics with an unequaled accuracy. In Chapter 5, we move on to the study of the relaxation dynamics of Tryptophan (Trp) in water. This aminoacid served as an in vivo probe of solvation dynamics, owing to its high dipolar moment in its excited state. Our study focuses on water reorganization around the chromophore and on the distinction of this important process from the electronic internal conversion occurring on a similar timescale. In the framework of the study of protein dynamics, Chapter 6 reports the investigation of a family of molecules extensively found in nature, namely porphyrins. In these molecular systems, a quite complex pattern of intramolecular relaxation mechanisms occurs, which needed to be clarified. A systematic study on the free base and on a wide series of metallo-porphyrins definitely clarified the picture of their electronic relaxation pathways. We finally elaborate a comprehensive scheme of this relaxation, including substituent's influence. The mechanisms observed are intrinsically related to the photophysical properties used by nature, as will be illustrated in the next Chapter. Trp and metallo-porphyrin constitute the key natural chromophore molecules for the non-invasive spectroscopic investigation of complex biological systems as haemoproteins. In Chapter 7, we follow relaxation dynamics of photo-excited Tryptophan and Haem (Fe-porphyrin) in ferro- and ferricytochrome c and in Myoglobin in its met form. In the former protein, an ultrafast energy transfer from Tryptophan to Heme is evidenced, the efficiency of which is found to depend on the oxidation state. The energetic relaxation pathway of the haem, also dependent on the oxidation state, is characterized by a porphyrin to metal charge transfer that triggers the ligand dissociation. In metMyoglobin, the fluorescence contribution of the two Tryptophans (W14 and W7), also quenched by resonant energy transfer to the haem, are temporally and spectrally separated, and the solvation dynamics of W7, located in the water-protein interface, is followed. The haem of metMb, which is in the ferric form, shows an electronic relaxation similar to that of ferricytochrome c. In parallel to the biology oriented investigations presented above, we extended our study to the metal-polypiridine complexes. Due to their specific photophysics, mainly characterized by a photo-induced Metal-to-Ligand Charge Transfer (MLCT), they are extensively used in photochemical applications involving charge transfer dynamics. In particular, they are used as sensitizer in the Dye-Sensitized-Solar-Cells (DSSCs). In Chapter 8, we present studies of these dyes, both in solution and adsorbed on a substrate, in order to understand the role of intra- and intermolecular dynamics on the electron injection process occurring upon absorption of light. Finally, Chapter 9 summarizes the conclusions of the investigations of the various systems studied.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Ultrafast laser spectroscopy
Ultrafast laser spectroscopy is a spectroscopic technique that uses ultrashort pulse lasers for the study of dynamics on extremely short time scales (attoseconds to nanoseconds). Different methods are used to examine the dynamics of charge carriers, atoms, and molecules. Many different procedures have been developed spanning different time scales and photon energy ranges; some common methods are listed below. Dynamics on the as to fs time scale are in general too fast to be measured electronically.
Molecular dynamics
Molecular dynamics (MD) is a computer simulation method for analyzing the physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamic "evolution" of the system. In the most common version, the trajectories of atoms and molecules are determined by numerically solving Newton's equations of motion for a system of interacting particles, where forces between the particles and their potential energies are often calculated using interatomic potentials or molecular mechanical force fields.
Spectroscopy
Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter waves and acoustic waves can also be considered forms of radiative energy, and recently gravitational waves have been associated with a spectral signature in the context of the Laser Interferometer Gravitational-Wave Observatory (LIGO).
Show more
Related publications (139)

Experimental demonstration of attosecond pump-probe spectroscopy with an X-ray free-electron laser

Christoph Bostedt, Jun Wang, Zhaoheng Guo, Xiang Li, Siqi Li, Zhen Zhang

Pump-probe experiments with subfemtosecond resolution are the key to understanding electronic dynamics in quantum systems. Here we demonstrate the generation and control of subfemtosecond pulse pairs from a two-colour X-ray free-electron laser. By measurin ...
Nature Portfolio2024

Bridging Native and Intrinsic Structures of Microhydrated Biomolecules by Cold Ion Spectroscopy

Andrei Zviagin

Solving native structures of such large molecules, like biomolecules, is often challenging, particularly due to the potentially infinite number of non-covalent interactions with water. In this thesis, we report the use of cold ion gas-phase action spectros ...
EPFL2023

Antenna-coupled infrared nanospectroscopy of intramolecular vibrational interaction

Hatice Altug, Aurélian Michel John-Herpin, Felipe Herrera

Many photonic and electronic molecular properties, as well as chemical and biochemical reactivities are controlled by fast intramolecular vibrational energy redistribution (IVR). This fundamental ultrafast process limits coherence time in applications from ...
Washington2023
Show more
Related MOOCs (19)
Basic Steps in Magnetic Resonance
A MOOC to discover basic concepts and a wide range of intriguing applications of magnetic resonance to physics, chemistry, and biology
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.