Oxidation kinetics of selected taste and odor compounds during ozonation of drinking water
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
For fifty years, heterogeneous photocatalysis has been considered as having potential to remove organic and microbiological pollutants from water under either artificial UV light or sunlight irradiation. However, after tens of thousands of published resear ...
Oxidative treatment of iodide-containing waters can lead to a formation of potentially toxic iodinated disinfection byproducts (I-DBPs). Iodide (I-) is easily oxidized to HOI by various oxidation processes and its reaction with dissolved organic matter (DO ...
This publication summarizes my journey in the field of chemical oxidation processes for water treatment over the last 30+ years. Initially, the efficiency of the application of chemical oxidants for micropollutant abatement was assessed by the abatement of ...
Cyanobacterial blooms occur at increasing frequency and intensity, notably in freshwater. This leads to the introduction of complex mixtures of their products, i.e., cyano-metabolites, to drinking water treatment plants. To assess the fate of cyano-metabol ...
Chemical oxidation has been applied in municipal water treatment for more than a century, initially for disinfection. In the early decades, chlorine disinfection was adopted in the fight against waterborne disease. However, the oxidative properties of chlo ...
Chlorothalonil, a fungicide applied for decades worldwide, has recently been banned in the European Union (EU) and Switzerland due to its carcinogenicity and the presence of potentially toxic transformation products (TPs) in groundwater. The spread and con ...
The abatement of organic micropollutants during oxidation processes has become an emerging issue for various urban water systems such as drinking water, wastewater, and water reuse. Reaction kinetics and mechanisms play an important role in terms of effici ...
Iodine is a naturally-occurring halogen in natural waters generally present in concentrations between 0.5 and 100 mu g L-1. During oxidative drinking water treatment, iodine-containing disinfection by-products (I-DBPs) can be formed. The formation of I-DBP ...
Selenium (mainly in the forms of selenite (Se(IV)) and selenate (Se(VI)) is a regulated drinking water contaminant, but there is little information on the kinetics and mechanisms of Se(IV) oxidation during water treatment. Species-specific and apparent sec ...
Chemical disinfectants employed in water and wastewater treatment can produce a variety of transformation products, including carbonyl compounds (e.g., saturated and unsaturated aldehydes and ketones). Experiments conducted under conditions relevant to chl ...