Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Heat waves, which are projected to be more frequent and intense in a warmer climate, could become a serious threat to plants that rely on water surplus availability, such as bryophytes. Here, I take the advantage of the European summer 2003 climate anomaly to assess the impact of an extreme heat wave on peat mosses of the genus Sphagnum, a group of bryophytes forming the bulk of living and dead biomass in peatlands. With this aim, 20 selected bogs in the Italian Alps were checked for Sphagnum survival in the years following the heat wave. Over the study area, the period May-September 2003 was characterized by higher mean monthly air temperature (13.5 degrees C) and lower mean monthly precipitation (87 mm) compared with normal climatic conditions (11.5 degrees C and 117 mm, respectively) so that the heat wave coincided with a drought spell. As a consequence of the unusual water stress, I documented an increased mortality of peat mosses forming high hummocks. In particular, at habitat scale, the distribution of desiccated peat mosses was restricted to the hummock face receiving the greatest amount of solar irradiation. However, at regional scale, the present study identified a climatic threshold, simply defined by the ratio of precipitation to temperature (P : T), which triggered an irreversible desiccation of peat mosses when mean monthly P : T dropped below 6.5 (mm : degrees C) during May-September 2003. The absence of any sign of recovery after 4 years since the drought must be seen as a harbinger of the deleterious effects of extreme heat waves on organisms not adapted to cope with abrupt climate anomaly.
Anthony Christopher Davison, Erwan Fabrice Koch, Jonathan Koh Boon Han