**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Étude d'un manuscrit de Ludwig Schläfli - Euklid. 2 Hefte

Abstract

The great Swiss mathematician Ludwig Schläfli (1814-1895) left after his death more than three hundred and fifty notebooks. They include mathematical studies and new results, as well as works about classical mathematical texts and a priori more surprising fields like modern European languages, as well as classical and oriental languages, theology and philosophy. Those notebooks were bequeathed to the Swiss National Library where they are still preserved today. Among them, one finds archival fonds No 254, namely two notebooks where Schläfli presents his analysis of Euclid's Elements. Those abundantly illustrated and annotated notebooks show their author's attraction to geometry and how meticulous a copyist he was. Many indices suggest that they go back to Schläfli's youth, when he started his theology studies at the University of Bern. This thesis presents an historical introduction and a critical edition of the two notebooks No 254.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (21)

Related publications (5)

Schläfli symbol

In geometry, the Schläfli symbol is a notation of the form that defines regular polytopes and tessellations. The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to more than three dimensions and discovered all their convex regular polytopes, including the six that occur in four dimensions. The Schläfli symbol is a recursive description, starting with {p} for a p-sided regular polygon that is convex.

Regular 4-polytope

In mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six convex and ten star regular 4-polytopes, giving a total of sixteen. The convex regular 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. He discovered that there are precisely six such figures.

Ludwig Schläfli

Ludwig Schläfli (15 January 1814 – 20 March 1895) was a Swiss mathematician, specialising in geometry and complex analysis (at the time called function theory) who was one of the key figures in developing the notion of higher-dimensional spaces. The concept of multidimensionality is pervasive in mathematics, has come to play a pivotal role in physics, and is a common element in science fiction. Ludwig spent most of his life in Switzerland. He was born in Grasswil (now part of Seeberg), his mother's hometown.

Yuri Faenza, Manuel Francesco Aprile, Alfonso Bolívar Cevallos Manzano

2-level polytopes naturally appear in several areas of pure and applied mathematics, including combinatorial optimization, polyhedral combinatorics, communication complexity, and statistics. In this paper, we present a study of some 2-level polytopes arisi ...

In this thesis we investigate a number of problems related to 2-level polytopes, in particular from the point of view of the combinatorial structure and the extension complexity. 2-level polytopes were introduced as a generalization of stable set polytopes ...

Explicit Model Predictive Control (EMPC) produces control laws defined over a set of polytopic regions in the state space. In this paper we present a method to create a binary search tree for point location in such polytopic sets, in order to provide a fas ...

2010