Cost accountingCost accounting is defined by the Institute of Management Accountants as "a systematic set of procedures for recording and reporting measurements of the cost of manufacturing goods and performing services in the aggregate and in detail. It includes methods for recognizing, classifying, allocating, aggregating and reporting such costs and comparing them with standard costs". Often considered a subset of managerial accounting, its end goal is to advise the management on how to optimize business practices and processes based on cost efficiency and capability.
Optimal stoppingIn mathematics, the theory of optimal stopping or early stopping is concerned with the problem of choosing a time to take a particular action, in order to maximise an expected reward or minimise an expected cost. Optimal stopping problems can be found in areas of statistics, economics, and mathematical finance (related to the pricing of American options). A key example of an optimal stopping problem is the secretary problem. Optimal stopping problems can often be written in the form of a Bellman equation, and are therefore often solved using dynamic programming.
Invariant subspaceIn mathematics, an invariant subspace of a linear mapping T : V → V i.e. from some vector space V to itself, is a subspace W of V that is preserved by T; that is, T(W) ⊆ W. Consider a linear mapping An invariant subspace of has the property that all vectors are transformed by into vectors also contained in . This can be stated as Since maps every vector in into Since a linear map has to map A basis of a 1-dimensional space is simply a non-zero vector . Consequently, any vector can be represented as where is a scalar.
Cost of goods soldCost of goods sold (COGS) is the carrying value of goods sold during a particular period. Costs are associated with particular goods using one of the several formulas, including specific identification, first-in first-out (FIFO), or average cost. Costs include all costs of purchase, costs of conversion and other costs that are incurred in bringing the inventories to their present location and condition. Costs of goods made by the businesses include material, labor, and allocated overhead.
Unit operationIn chemical engineering and related fields, a unit operation is a basic step in a process. Unit operations involve a physical change or chemical transformation such as separation, crystallization, evaporation, filtration, polymerization, isomerization, and other reactions. For example, in milk processing, the following unit operations are involved: homogenization, pasteurization, and packaging. These unit operations are connected to create the overall process.
Dynamic lot-size modelThe dynamic lot-size model in inventory theory, is a generalization of the economic order quantity model that takes into account that demand for the product varies over time. The model was introduced by Harvey M. Wagner and Thomson M. Whitin in 1958. We have available a forecast of product demand dt over a relevant time horizon t=1,2,...,N (for example we might know how many widgets will be needed each week for the next 52 weeks).
Newsvendor modelThe newsvendor (or newsboy or single-period or salvageable) model is a mathematical model in operations management and applied economics used to determine optimal inventory levels. It is (typically) characterized by fixed prices and uncertain demand for a perishable product. If the inventory level is , each unit of demand above is lost in potential sales. This model is also known as the newsvendor problem or newsboy problem by analogy with the situation faced by a newspaper vendor who must decide how many copies of the day's paper to stock in the face of uncertain demand and knowing that unsold copies will be worthless at the end of the day.
Cobham's thesisCobham's thesis, also known as Cobham–Edmonds thesis (named after Alan Cobham and Jack Edmonds), asserts that computational problems can be feasibly computed on some computational device only if they can be computed in polynomial time; that is, if they lie in the complexity class P. In modern terms, it identifies tractable problems with the complexity class P.