Elasticity (physics)In physics and materials science, elasticity is the ability of a body to resist a distorting influence and to return to its original size and shape when that influence or force is removed. Solid objects will deform when adequate loads are applied to them; if the material is elastic, the object will return to its initial shape and size after removal. This is in contrast to plasticity, in which the object fails to do so and instead remains in its deformed state. The physical reasons for elastic behavior can be quite different for different materials.
Magnetic resonance elastographyMagnetic resonance elastography (MRE) is a form of elastography that specifically leverages MRI to quantify and subsequently map the mechanical properties (elasticity or stiffness) of soft tissue. First developed and described at Mayo Clinic by Muthupillai et al. in 1995, MRE has emerged as a powerful, non-invasive diagnostic tool, namely as an alternative to biopsy and serum tests for staging liver fibrosis. Diseased tissue (e.g. a breast tumor) is often stiffer than the surrounding normal (fibroglandular) tissue, providing motivation to assess tissue stiffness.
Idiopathic intracranial hypertensionIdiopathic intracranial hypertension (IIH), previously known as pseudotumor cerebri and benign intracranial hypertension, is a condition characterized by increased intracranial pressure (pressure around the brain) without a detectable cause. The main symptoms are headache, vision problems, ringing in the ears, and shoulder pain. Complications may include vision loss. This condition is idiopathic, meaning there is no known cause. Risk factors include being overweight or a recent increase in weight.
Anterior cardiac veinsThe anterior cardiac veins (or anterior veins of right ventricle) are a variable number of small veins (usually 2-5) which drain blood from the anterior portion of the right ventricle into the right atrium. The right marginal vein frequently opens into the right atrium, and is therefore sometimes regarded as belonging to this group. Unlike most cardiac veins, the anterior cardiac veins do not end in the coronary sinus; instead, they drain directly into the anterior wall of the right atrium.
MeningesIn anatomy, the meninges (məˈnɪndʒiːz, : meninx (ˈmiːnɪŋks or ˈmɛnɪŋks), ) are the three membranes that envelop the brain and spinal cord. In mammals, the meninges are the dura mater, the arachnoid mater, and the pia mater. Cerebrospinal fluid is located in the subarachnoid space between the arachnoid mater and the pia mater. The primary function of the meninges is to protect the central nervous system. Dura mater The dura mater (tough mother) (also rarely called meninx fibrosa or pachymeninx) is a thick, durable membrane, closest to the skull and vertebrae.
Spherical sectorIn geometry, a spherical sector, also known as a spherical cone, is a portion of a sphere or of a ball defined by a conical boundary with apex at the center of the sphere. It can be described as the union of a spherical cap and the cone formed by the center of the sphere and the base of the cap. It is the three-dimensional analogue of the sector of a circle. If the radius of the sphere is denoted by r and the height of the cap by h, the volume of the spherical sector is This may also be written as where φ is half the cone angle, i.
Perivascular spaceA perivascular space, also known as a Virchow–Robin space, is a fluid-filled space surrounding certain blood vessels in several organs, including the brain, potentially having an immunological function, but more broadly a dispersive role for neural and blood-derived messengers. The brain pia mater is reflected from the surface of the brain onto the surface of blood vessels in the subarachnoid space. In the brain, perivascular cuffs are regions of leukocyte aggregation in the perivascular spaces, usually found in patients with viral encephalitis.
Pia materPia mater (ˈpaɪ.ə_ˈmeɪtər or ˈpiːə_ˈmɑːtər), often referred to as simply the pia, is the delicate innermost layer of the meninges, the membranes surrounding the brain and spinal cord. Pia mater is medieval Latin meaning "tender mother". The other two meningeal membranes are the dura mater and the arachnoid mater. Both the pia and arachnoid mater are derivatives of the neural crest while the dura is derived from embryonic mesoderm. The pia mater is a thin fibrous tissue that is permeable to water and small solutes.
ParenchymaParenchyma (pəˈɹɛŋkᵻmə) is the bulk of functional substance in an animal organ or structure such as a tumour. In zoology it is the name for the tissue that fills the interior of flatworms. The term parenchyma is Neo-Latin from the n word παρέγχυμα n parenchyma meaning 'visceral flesh', and from παρεγχεῖν parenkhein meaning 'to pour in' from παρα- para- 'beside' + ἐν en- 'in' + χεῖν khein 'to pour'. Originally, Erasistratus and other anatomists used it to refer to certain human tissues.
Wire-frame modelA wire-frame model, also wireframe model, is a visual representation of a three-dimensional (3D) physical object used in 3D computer graphics. It is created by specifying each edge of the physical object where two mathematically continuous smooth surfaces meet, or by connecting an object's constituent vertices using (straight) lines or curves. The object is projected into screen space and rendered by drawing lines at the location of each edge. The term "wire frame" comes from designers using metal wire to represent the three-dimensional shape of solid objects.