Physical properties including the equation of state, elasticity, and shear strength of pyrite have been measured by a series of X-ray diffraction in diamond-anvil cells at pressures up to 50 GPa. A Birch-Murnaghan equation of state fit to the quasi hydrostatic pressure-volume data obtained from laboratory X-ray source/film techniques yields a quasihydrostatic bulk modulus K-0T = 133.5 (+/-5.2) GPa and bulk modulus first pressure derivative K-0T' = 5.73 (+/-0.58). The apparent equation of state is found to be strongly dependent on the stress conditions in the sample. The stress dependency of the high-pressure properties is examined with anisotropic elasticity theory from subsequent measurements of energy-dispersive radial diffraction experiments in the diamond-anvil cell. The calculated values of K-0T depend largely upon the angle between the diffracting plane normal and the maximum stress axis. The uniaxial stress component in the sample, t = sigma(3) - sigma(1), varies with pressure as t = -3.11 + 0.43P between 10 and 30 GPa. The pressure derivatives of the elastic moduli dC(11)/dP = 5.76 (+/-0.15), dC(12)/dP = 1.41 (+/-0.11) and dC(44)/dP = 1.92 (+/-0.06) are obtained from the diffraction data assuming previously reported zero-pressure ultrasonic data (C-11 = 382 GPa, C-12 = 31 GPa, and C-44 = 109 GPa).
Pandula Manura Liyanage, Claudia Cancellieri, Giacomo Lorenzin
Mark Pauly, Florin Isvoranu, Francis Julian Panetta, Uday Kusupati, Seiichi Eduardo Suzuki Erazo, Yingying Ren
John Martin Kolinski, Chenzhuo Li, Xinyue Wei