Strongly coupled bio-plasmonic system: Application to oxygen sensing
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Surface plasmons are excited at a metal/dielectric interface, through the coupling between conduction electrons and incident photons. The surface plasmon generation is therefore strongly determined by the accessibility of the surface to the incoming electr ...
Electrons generated by Landau damping of the plasmon excitation on gold nanoparticles that can be injected into an adjacent semiconductor e.g. anatase TiO2, enhancing the light harvesting capabilities of solar energy conversion devices. The understanding o ...
Low-dimensional van der Waals (vdW) materials can harness tightly confined polaritonic waves to deliver unique advantages for nanophotonic biosensing. The reduced dimensionality of vdW materials, as in the case of two-dimensional graphene, can greatly enha ...
We report on photo-current generation in freestanding monolayered gold nanoparticle membranes excited by using a focused laser beam. The absence of a substrate leads to a 50% increase of the photo-current at the surface plasmon resonance. This current is a ...
Harnessing photoexcited “hot” carriers in metallic nanostructures could define a new phase of non-equilibrium optoelectronics for photodetection and photocatalysis. Surface plasmons are considered pivotal for enabling efficient operation of hot carrier dev ...
We report on photo-current generation in freestanding monolayered gold nanoparticle membranes excited by using a laser. The absence of a substrate leads to a 50% increase of the photocurrent at plasmon resonance. This current is attributed to a combination ...
Currently, sensors invade into our everyday life to bring higher life standards, excellent medical diagnostic and efficient security. Plasmonic biosensors demonstrate an outstanding performance ranking themselves among best candidates for different applica ...
To address limitations in the production of DNA aptamers against small molecules, we introduce a DNA-based capture-SELEX (systematic evolution of ligands by exponential enrichment) protocol with long and continuous randomized library for more flexibility, ...
We image the dispersion of surface plasmon polaritons in gold and silver thin films of 30 and 50 nm thickness, using angle-resolved white light spectroscopy in the Kretschmann geometry. Calibrated dispersion curves are obtained over a wavelength range span ...
We present optical absorption spectra from the ultraviolet to the visible for size selected neutral Ag-n clusters (n = 5-120) embedded in solid Ne. We compare the spectra to time-dependent density functional calculations (TDDFT) that address the influence ...