Publication

Molecular Dynamics Simulations of Helium Atoms Clustering in bcc Iron

Ning Gao
2011
EPFL thesis
Abstract

Helium atoms are known to have a significant impact on materials used in fission and fusion reactors. In particular, the presence of helium atoms can change the mechanical properties and degrade the lifetime of reactors. In order to develop the helium-resistance materials, the underlying interactions between helium atoms and matrix atoms have to be understood. In the past, atomistic simulations have contributed a lot to the basic energy states of helium atoms in different defects of materials. Especially, insights into the formation energies of helium atoms at simple defects have been calculated by ab initio and molecular dynamics. The substitional helium has lower formation energy than the tetrahedral and octahedral interstitial helium atom. Additionally, the binding energies of helium with small HenVm cluster have also been found to be all positive. However, all these simulations have been performed without showing the kinetic formation process of such helium defects. The interactions of defect with larger number of helium atoms are also not explored in detail. In the first part of this thesis, a new relaxation-fitting method has been developed for cross potential of Fe-He system based on more energy data of helium-defect clusters from ab initio calculations and by including the migration energy of single free helium atom in the fitting process. Besides, the recently fitted magnetic potentials of Fe have been used to describe the Fe-Fe interactions for such cross potential. The new fitted Fe-He potentials have predicted well not only the properties of simple helium defect, but also the properties of helium clusters and diffusion process of helium atoms. Based on the new Fe-He potentials, the interactions between helium atoms and Fe with the effect of single vacancy have been simulated utilizing the classical molecular dynamics (MD) method in the single bcc Fe lattice at room temperatures by helium atoms up to 18. The binding energies of helium atom with HenV cluster are computed. By increasing number of helium atoms, the binding energy decreases first, then slowly increases up to n = 4. It is then almost constant between n = 5 to 15 but increases strongly at n = 16 to form a peak. This last increase is related to the athermal self-interstitial atom (SIA) emission in the form of dumbbell which relaxes the restrained system to He16V2 cluster. The second binding energy peak occurs at n = 18 by the formation of the second SIA to form He18V3 cluster. Close inspection of the local configuration shows the formed SIA combines with the helium-defect cluster. Calculation of the pressure of the helium-defect cluster shows local peak normal stress and shear stress values up to 9 GPa and 4 GPa, respectively. The local configurations of helium-defect cluster suggest that with increasing helium content, some symmetrical structures can be formed. By increasing the number of helium atoms inserted in single bcc Fe lattice, the clustering process of the formed SIAs with presence of helium cluster has been simulated with MD methods at room temperatures with the new fitted Fe-He potential. The first SIA is formed after 6 He atoms being inserted without vacancy. The simulations indicate that the SIA has mainly two configurations as either a dumbbell or a crowdion, which can be exchanged in the interface between helium bubble and matrix atoms. The SIA cluster can change direction and absorb more SIAs to grow. Small dislocation loops have been observed to form with Burgers vector b = 1/2 a0 on a {111} habit plane. The kinetic process of formation and growth of dislocation loop explored by MD simulations includes: (1) the formation of a self-interstitial atom by the high pressure of the helium cluster/bubble; (2) the diffusion of these self-interstitial atoms on the interface between helium bubble and matrix; (3) the clustering of the self-interstitial atoms in the form of a dislocation loop and its diffusion away from bubble when the number of SIAs in loop reaches a critical number. Moreover, the effect of grain boundary (GB) on the formation of helium clusters has been explored with MD simulations in symmetrical GBs and normal nano-grain boundary samples. Helium atoms can be trapped by GBs at free spaces. The local atomic excess free volume (LAEFV) is found to the one of the main parameters not only related with the energy state of GB but also with the nucleation and growth of He atoms in the GB.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (41)
Helium
Helium (from helios) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is the lowest among all the elements, and it does not have a melting point at standard pressure. It is the second-lightest and second most abundant element in the observable universe, after hydrogen. It is present at about 24% of the total elemental mass, which is more than 12 times the mass of all the heavier elements combined.
Helium-4
Helium-4 () is a stable isotope of the element helium. It is by far the more abundant of the two naturally occurring isotopes of helium, making up about 99.99986% of the helium on Earth. Its nucleus is identical to an alpha particle, and consists of two protons and two neutrons. Alpha decay of heavy elements in the Earth's crust is the source of most naturally occurring helium-4 on Earth, produced after the planet cooled and solidified.
Helium-3
Helium-3 (3He see also helion) is a light, stable isotope of helium with two protons and one neutron (in contrast, the most common isotope, helium-4 has two protons and two neutrons). Other than protium (ordinary hydrogen), helium-3 is the only stable isotope of any element with more protons than neutrons. Helium-3 was discovered in 1939. Helium-3 occurs as a primordial nuclide, escaping from Earth's crust into its atmosphere and into outer space over millions of years.
Show more
Related publications (87)

Engineering SYK Interactions in Disordered Graphene Flakes under Realistic Experimental Conditions

Oleg Yazyev, Yifei Guan, Marta Agnieszka Brzezinska

We model interactions following the Sachdev-Ye-Kitaev (SYK) framework in disordered graphene flakes up to 300 000 atoms in size (-100 nm in diameter) subjected to an out-of-plane magnetic field B of 5-20 Tesla within the tight-binding formalism. We investi ...
AMER PHYSICAL SOC2023

In situ work function measurements of W, WO3 nanostructured surfaces

Francisco Sanchez

Surface nanostructuring enables the fabrication of materials with highly desirable properties. Nanostructured tungsten surfaces have potential applications in solar water splitting. Exposing a polished tungsten surface to helium plasma induces various surf ...
ELSEVIER SCIENCE SA2022

Nuclei with Up to A=6 Nucleons with Artificial Neural Network Wave Functions

Giuseppe Carleo

The ground-breaking works of Weinberg have opened the way to calculations of atomic nuclei that are based on systematically improvable Hamiltonians. Solving the associated many-body Schrodinger equation involves non-trivial difficulties, due to the non-per ...
SPRINGER WIEN2022
Show more
Related MOOCs (13)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.