Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.
Among the different fields of research in nuclear magnetic resonance (NMR) which are currently investigated in the Laboratory of Biomolecular Magnetic Resonance (LRMB), two subjects that are closely related to each other are presented in this article. On the one hand, we show how to populate long-lived states (LLS) that have long lifetimes T_LLS which allow one to go beyond the usual limits imposed by the longitudinal relaxation time T_1. This makes it possible to extend NMR experiments to longer time-scales. As an application, we demonstrate the extension of the timescale of diffusion measurements by NMR spectroscopy. On the other hand, we review our work on long-lived coherences (LLC), a particular type of coherence between two spin states that oscillates with the frequency of the scalar coupling constant J_IS and decays with a time constant T_LLC. Again, this time constant T_LLC can be much longer than the transverse relaxation time T_2. By extending the coherence lifetimes, we can narrow the linewidths to an unprecedented extent. J-couplings and residual dipolar couplings (RDCs) in weakly-oriented phases can be measured with the highest precision.
David Lyndon Emsley, Saumya Badoni, Pierrick Berruyer
Rolf Gruetter, Andrea Capozzi, Jean-Noël Hyacinthe, Thanh Phong Kevin Lê, Emma Linnea Wiström
David Lyndon Emsley, Federico De Biasi, Yu Rao, Dominik Józef Kubicki, Amrit Venkatesh