Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Site-specific reproducibility and repeatability of electron capture dissociation (ECD) in Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) are of fundamental importance for product ion abundance (PIA)-based peptide and protein structure analysis. However, despite the growing interest in ECD PIA-based applications, these parameters have not yet been investigated in a consistent manner. Here, we first provide a detailed description of the experimental parameters for ECD-based tandem mass spectrometry performed on a hybrid linear ion trap (LTQ) FT-ICR MS. In the following, we describe the evaluation and comparison of ECD and infrared multiphoton dissociation (IRMPD) PIA methodologies upon variation of a number of experimental parameters, for example, cathode potential (electron energy), laser power, electron and photon irradiation periods and pre-irradiation delays, as well as precursor ion number. Ranges of experimental parameters that yielded an average PIA variation below 5% and 15% were determined for ECD and IRMPD, respectively. We report cleavage site-dependent ECD PIA variation below 20% and correlation coefficients between fragmentation patterns superior to 0.95 for experiments performed on three FT-ICR MS instruments. Overall, the encouraging results obtained for ECD PIA reproducibility and repeatability support the use of ECD PIA as a complementary source of information to m/z data in radical-induced dissociation applied for peptide and protein structure analysis.
Yury Tsybin, Anton Kozhinov, Konstantin Nagornov