Nonlinear systemIn mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other scientists since most systems are inherently nonlinear in nature. Nonlinear dynamical systems, describing changes in variables over time, may appear chaotic, unpredictable, or counterintuitive, contrasting with much simpler linear systems.
HypercomputationHypercomputation or super-Turing computation is a set of models of computation that can provide outputs that are not Turing-computable. For example, a machine that could solve the halting problem would be a hypercomputer; so too would one that can correctly evaluate every statement in Peano arithmetic. The Church–Turing thesis states that any "computable" function that can be computed by a mathematician with a pen and paper using a finite set of simple algorithms, can be computed by a Turing machine.
Church–Turing thesisIn computability theory, the Church–Turing thesis (also known as computability thesis, the Turing–Church thesis, the Church–Turing conjecture, Church's thesis, Church's conjecture, and Turing's thesis) is a thesis about the nature of computable functions. It states that a function on the natural numbers can be calculated by an effective method if and only if it is computable by a Turing machine. The thesis is named after American mathematician Alonzo Church and the British mathematician Alan Turing.
Metric mapIn the mathematical theory of metric spaces, a metric map is a function between metric spaces that does not increase any distance. These maps are the morphisms in the , Met. Such functions are always continuous functions. They are also called Lipschitz functions with Lipschitz constant 1, nonexpansive maps, nonexpanding maps, weak contractions, or short maps. Specifically, suppose that and are metric spaces and is a function from to . Thus we have a metric map when, for any points and in , Here and denote the metrics on and respectively.
Open and closed mapsIn mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. That is, a function is open if for any open set in the is open in Likewise, a closed map is a function that maps closed sets to closed sets. A map may be open, closed, both, or neither; in particular, an open map need not be closed and vice versa. Open and closed maps are not necessarily continuous.
Online casinoOnline casinos, also known as virtual casinos or Internet casinos, are online versions of traditional ("brick and mortar") casinos. Online casinos enable gamblers to play and wager on casino games through the Internet. It is a prolific form of online gambling. Some online casinos claim higher payback percentages for slot machine games, and some publish payout percentage audits on their websites. Assuming that the online casino is using an appropriately programmed random number generator, table games like blackjack have an established house edge.
Online pokerOnline poker is the game of poker played over the Internet. It has been partly responsible for a huge increase in the number of poker players worldwide. Christiansen Capital Advisors stated online poker revenues grew from 82.7millionin2001to2.4 billion in 2005, while a survey carried out by DrKW and Global Betting and Gaming Consultants asserted online poker revenues in 2004 were at $1.4 billion.