Heat Transfer in an Enhanced Cable Insulation Scheme for the Superconducting Magnets of the LHC Luminosity Upgrade
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The interconnections between Large Hadron Collider (LHC) main dipole and quadrupole magnets are made of soldered joints of two superconducting cables stabilized by a copper bus bar. The 2008 incident revealed the possible presence of defects in the interco ...
NbTi-based Rutherford cables are used in the coils of the Large Hadron Collider (LHC) magnets. These cables are designed to operate with currents up to 13 kA at temperatures of 1.9 K. Beam losses can locally heat the superconducting cables above the critic ...
The interconnections between Large Hadron Collider (LHC) main dipole and quadrupole magnets are made of soldered joints of two superconducting cables stabilized by a copper bus bar. The 2008 incident revealed the possible presence of defects in the interco ...
The operation of the Large Hadron Collider calls for a thorough analysis of the thermo-electric behavior of the 13 kA superconducting bus-bars connecting its dipole and quadrupole main magnets. This presentation reports a synthesis of the work performed jo ...
Superconducting magnets can exhibit training quenches during successive powering to reaching nominal performance. The slip-stick motion of the conductors is considered to be one of the mechanisms of training. In this paper we present a simple quantitative ...
CERN is performing a systematic analysis of the interconnecting bus bars of the Large Hadron Collider (LHC) main magnets. Their thermal, electrical, mechanical and hydraulic performances are addressed. In the frame of these studies, the heat transfer betwe ...
Superconducting magnets submitted to large heat loads, as the low-β quadrupoles for the LHC luminosity upgrade, need the development of new concepts of cable electrical insulation featuring a He-II porous wrapping scheme. This paper reports and discusses r ...
The energy ramp and the betatron squeeze at the CERN Large Hadron Collider (LHC) are particularly critical oper- ational phases that involve the manipulation of beams well above the safe limit for damage of accelerator components. In particular, the squeez ...
The CERN-LHC is a high energy particle collider, where intense proton bunches are brought into collision. In order to achieve optimum performance, the bunches must have a high brightness, leading to strong and significant beam-beam effects. Experimental te ...
Improving the energy efficiency of cooling systems can contribute to reduce the emission of greenhouse gases. Currently, most microelectronic applications are air-cooled. Switching to two-phase cooling systems would decrease power consumption and allow for ...