Well-founded relationIn mathematics, a binary relation R is called well-founded (or wellfounded or foundational) on a class X if every non-empty subset S ⊆ X has a minimal element with respect to R, that is, an element m ∈ S not related by s R m (for instance, "s is not smaller than m") for any s ∈ S. In other words, a relation is well founded if Some authors include an extra condition that R is set-like, i.e., that the elements less than any given element form a set.
Termination analysisIn computer science, termination analysis is program analysis which attempts to determine whether the evaluation of a given program halts for each input. This means to determine whether the input program computes a total function. It is closely related to the halting problem, which is to determine whether a given program halts for a given input and which is undecidable.
Higher-order logicIn mathematics and logic, a higher-order logic (abbreviated HOL) is a form of predicate logic that is distinguished from first-order logic by additional quantifiers and, sometimes, stronger semantics. Higher-order logics with their standard semantics are more expressive, but their model-theoretic properties are less well-behaved than those of first-order logic. The term "higher-order logic" is commonly used to mean higher-order simple predicate logic.
Fragment (logic)In mathematical logic, a fragment of a logical language or theory is a subset of this logical language obtained by imposing syntactical restrictions on the language. Hence, the well-formed formulae of the fragment are a subset of those in the original logic. However, the semantics of the formulae in the fragment and in the logic coincide, and any formula of the fragment can be expressed in the original logic.
Correctness (computer science)In theoretical computer science, an algorithm is correct with respect to a specification if it behaves as specified. Best explored is functional correctness, which refers to the input-output behavior of the algorithm (i.e., for each input it produces an output satisfying the specification). Within the latter notion, partial correctness, requiring that if an answer is returned it will be correct, is distinguished from total correctness, which additionally requires that an answer is eventually returned, i.e.
Decidability (logic)In logic, a true/false decision problem is decidable if there exists an effective method for deriving the correct answer. Zeroth-order logic (propositional logic) is decidable, whereas first-order and higher-order logic are not. Logical systems are decidable if membership in their set of logically valid formulas (or theorems) can be effectively determined. A theory (set of sentences closed under logical consequence) in a fixed logical system is decidable if there is an effective method for determining whether arbitrary formulas are included in the theory.
Well-orderIn mathematics, a well-order (or well-ordering or well-order relation) on a set S is a total order on S with the property that every non-empty subset of S has a least element in this ordering. The set S together with the well-order relation is then called a well-ordered set. In some academic articles and textbooks these terms are instead written as wellorder, wellordered, and wellordering or well order, well ordered, and well ordering. Every non-empty well-ordered set has a least element.
Non-well-founded set theoryNon-well-founded set theories are variants of axiomatic set theory that allow sets to be elements of themselves and otherwise violate the rule of well-foundedness. In non-well-founded set theories, the foundation axiom of ZFC is replaced by axioms implying its negation. The study of non-well-founded sets was initiated by Dmitry Mirimanoff in a series of papers between 1917 and 1920, in which he formulated the distinction between well-founded and non-well-founded sets; he did not regard well-foundedness as an axiom.
Description logicDescription logics (DL) are a family of formal knowledge representation languages. Many DLs are more expressive than propositional logic but less expressive than first-order logic. In contrast to the latter, the core reasoning problems for DLs are (usually) decidable, and efficient decision procedures have been designed and implemented for these problems. There are general, spatial, temporal, spatiotemporal, and fuzzy description logics, and each description logic features a different balance between expressive power and reasoning complexity by supporting different sets of mathematical constructors.
AbstractionAbstraction is a conceptual process wherein general rules and concepts are derived from the usage and classification of specific examples, literal (real or concrete) signifiers, first principles, or other methods. "An abstraction" is the outcome of this process—a concept that acts as a common noun for all subordinate concepts and connects any related concepts as a group, field, or category. Conceptual abstractions may be formed by filtering the information content of a concept or an observable phenomenon, selecting only those aspects which are relevant for a particular purpose.