Empty setIn mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other theories, its existence can be deduced. Many possible properties of sets are vacuously true for the empty set. Any set other than the empty set is called non-empty. In some textbooks and popularizations, the empty set is referred to as the "null set".
Perfect matchingIn graph theory, a perfect matching in a graph is a matching that covers every vertex of the graph. More formally, given a graph G = (V, E), a perfect matching in G is a subset M of edge set E, such that every vertex in the vertex set V is adjacent to exactly one edge in M. A perfect matching is also called a 1-factor; see Graph factorization for an explanation of this term. In some literature, the term complete matching is used. Every perfect matching is a maximum-cardinality matching, but the opposite is not true.
Symmetric graphIn the mathematical field of graph theory, a graph G is symmetric (or arc-transitive) if, given any two pairs of adjacent vertices u_1—v_1 and u_2—v_2 of G, there is an automorphism such that and In other words, a graph is symmetric if its automorphism group acts transitively on ordered pairs of adjacent vertices (that is, upon edges considered as having a direction). Such a graph is sometimes also called 1-arc-transitive or flag-transitive. By definition (ignoring u_1 and u_2), a symmetric graph without isolated vertices must also be vertex-transitive.
Clique coverIn graph theory, a clique cover or partition into cliques of a given undirected graph is a partition of the vertices into cliques, subsets of vertices within which every two vertices are adjacent. A minimum clique cover is a clique cover that uses as few cliques as possible. The minimum k for which a clique cover exists is called the clique cover number of the given graph. A clique cover of a graph G may be seen as a graph coloring of the complement graph of G, the graph on the same vertex set that has edges between non-adjacent vertices of G.
Cardinal numberIn mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the case of infinite sets, the infinite cardinal numbers have been introduced, which are often denoted with the Hebrew letter (aleph) marked with subscript indicating their rank among the infinite cardinals. Cardinality is defined in terms of bijective functions.
Hall's marriage theoremIn mathematics, Hall's marriage theorem, proved by , is a theorem with two equivalent formulations. In each case, the theorem gives a necessary and sufficient condition for an object to exist: The combinatorial formulation answers whether a finite collection of sets has a transversal—that is, whether an element can be chosen from each set without repetition. Hall's condition is that for any group of sets from the collection, the total unique elements they contain is at least as large as the number of sets in the group.
Cycle double coverIn graph-theoretic mathematics, a cycle double cover is a collection of cycles in an undirected graph that together include each edge of the graph exactly twice. For instance, for any polyhedral graph, the faces of a convex polyhedron that represents the graph provide a double cover of the graph: each edge belongs to exactly two faces. It is an unsolved problem, posed by George Szekeres and Paul Seymour and known as the cycle double cover conjecture, whether every bridgeless graph has a cycle double cover.
Intersection (set theory)In set theory, the intersection of two sets and denoted by is the set containing all elements of that also belong to or equivalently, all elements of that also belong to Intersection is written using the symbol "" between the terms; that is, in infix notation. For example: The intersection of more than two sets (generalized intersection) can be written as: which is similar to capital-sigma notation. For an explanation of the symbols used in this article, refer to the table of mathematical symbols.
Guaranteed minimum incomeGuaranteed minimum income (GMI), also called minimum income (or mincome for short), is a social-welfare system that guarantees all citizens or families an income sufficient to live on, provided that certain eligibility conditions are met, typically: citizenship; a means test; and either availability to participate in the labor market, or willingness to perform community services. The primary goal of a guaranteed minimum income is reduction of poverty. In circumstances when citizenship is the sole qualification, the program becomes a universal basic income system.
Cardinality of the continuumIn set theory, the cardinality of the continuum is the cardinality or "size" of the set of real numbers , sometimes called the continuum. It is an infinite cardinal number and is denoted by (lowercase Fraktur "c") or . The real numbers are more numerous than the natural numbers . Moreover, has the same number of elements as the power set of Symbolically, if the cardinality of is denoted as , the cardinality of the continuum is This was proven by Georg Cantor in his uncountability proof of 1874, part of his groundbreaking study of different infinities.