Publication

pH sensing using boron doped diamond electrodes

Abstract

The boron doped diamond (BDD) electrode is presented as an appropriate candidate for next generation glass-free, highly stable and accurate pH sensors. The method used in this study is based on the potential change related to the hydrogen evolution reaction following a current step, which is pH dependent. Alkali cations in the solution have no influence on the accuracy of the pH calibration curve, which provides an advantage with respect to the conventional pH glass electrode. The unwanted influence of electrochemically active compounds in solution can be avoided by adjusting the current density applied during chronopotentiometric measurements. The accuracy of the pH measurements is due to the excellent stability as well as the wide potential window and low background current of BDD electrodes. This faculty was not observed when using conventional electrode materials. The efficacy of this new type of pH sensor has been tested using tap water as a typical real sample.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.