On the importance of electroweak corrections for Majorana dark matter indirect detection
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2658 new measurements from 644 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We summarize ...
This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2158 new measurements from 551 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summa ...
We analyse the process of reheating the Universe in the electroweak theory where the Higgs field plays a role of the inflaton. We estimate the maximal temperature of the Universe and fix the initial conditions for radiation-dominated phase of the Universe ...
The cross section for a Majorana Dark Matter particle annihilating into light fermions is helicity suppressed. We show that, if the Dark Matter is the neutral Majorana component of a multiplet which is charged under the electroweak interactions of the Stan ...
Motivated by the two candidate Dark Matter events observed by the CDMS experiment, we consider a Constrained Dark Matter Singlet (CDMS) model that, with no free parameters, predicts the DM mass and the DM direct cross section to be in the range weakly favo ...
This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2778 new measurements from 645 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summa ...
High-energy particle physics is going through a crucial moment of its history, one in which it can finally aspire to give a precise answer to some of the fundamental questions it has been conceived for. On the one side, the theoretical picture describing t ...
Currently, the best theoretical description of fundamental matter and its gravitational interaction is given by the Standard Model (SM) of particle physics and Einstein's theory of General Relativity (GR). These theories contain a number of seemingly unrel ...
We explore direct collider probes of the resonant leptogenesis mechanism for the origin of matter. We work in the context of theories where the Standard Model is extended to include an additional gauged U(1) symmetry broken at the TeV scale, and where the ...
Many extensions of the Standard Model (SM) predict new neutral vector bosons at energies accessible by the Large Hadron Collider (LHC). We study an extension of the SM with new chiral fermions subject to non-trivial anomaly cancellations. If the new fermio ...