Publication

Nondetection Zone Assessment of an Active Islanding Detection Method and its Experimental Evaluation

Behrooz Bahrani
2011
Journal paper
Abstract

This paper analytically determines the nondetection zone (NDZ) of an active islanding detection method, and proposes a solution to obviate the NDZ. The method actively injects a negative-sequence current through the interface voltage-sourced converter (VSC) of a distributed generation (DG) unit, as a disturbance signal for islanding detection. The estimated magnitude of the corresponding negative-sequence voltage at the PCC is used as the islanding detection signal. In this paper, based on a laboratory test system, the performance of the islanding detection method under UL1741 anti-islanding test conditions is evaluated. Then, determining the NDZ of the method and proposing the countermeasure, the existence of the NDZ and the performance of the modified method to eliminate the NDZ is verified based on simulation results in PSCAD/EMTDC software environment and experimental tests.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Islanding
Islanding is the condition in which a distributed generator (DG) continues to power a location even though external electrical grid power is no longer present. Islanding can be dangerous to utility workers, who may not realize that a circuit is still powered, and it may prevent automatic re-connection of devices. Additionally, without strict frequency control, the balance between load and generation in the islanded circuit can be violated, thereby leading to abnormal frequencies and voltages.
Heun's method
In mathematics and computational science, Heun's method may refer to the improved or modified Euler's method (that is, the explicit trapezoidal rule), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods.
Euler method
In mathematics and computational science, the Euler method (also called the forward Euler method) is a first-order numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. It is the most basic explicit method for numerical integration of ordinary differential equations and is the simplest Runge–Kutta method. The Euler method is named after Leonhard Euler, who first proposed it in his book Institutionum calculi integralis (published 1768–1870).
Show more
Related publications (32)
Related MOOCs (9)
Electronics
Introduction à l’électronique analogique- seconde partie. Fonctions linéaires de base réalisée à l’aide de transistor bipolaire.
Electronics
Introduction à l’électronique analogique- seconde partie. Fonctions linéaires de base réalisée à l’aide de transistor bipolaire.
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Show more