A multiscale Darcy-Brinkman model for fluid flow in fractured porous media
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this paper we provide a general framework for model reduction methods applied to fluid flow in porous media. Using reduced basis and numerical homogenization techniques we show that the complexity of the numerical approximation of Stokes flow in heterog ...
In this paper we provide a general framework for model reduction methods applied to fluid flow in porous media. Using reduced basis and numerical homogenization techniques we show that the complexity of the numerical approximation of Stokes flow in heterog ...
Fluid flow in porous media is a multiscale process where the effective dynamics, which is often the goal of a computation, depends strongly on the porous micro structure. Resolving the micro structure in the whole porous medium can, however, be prohibitive ...
The modeling of an incompressible fluid through a porous medium requires to deal with two systems of partial differential equations (PDEs) for the two types of media (fluid and porous). A possible way to couple theses two equations is by using the penaliza ...
We present a new conservative multiscale method for Stokes flow in heterogeneous porous media. The method couples a discontinuous Galerkin finite element method(DG-FEM) at the macroscopic scale for the solution of an effective Darcy equation with a Stokes ...
We report the progress on a new computational technique for fully three-dimensional simulation of propagation of hydraulic fractures in the vicinity of a wellbore. One of the components of this technique is the boundary element code for modeling the elasti ...
The fundamentals of flow in the liquid composite moulding (LCM) processes are reviewed with an emphasis on multiphase flow effects considering the dual-scale thin porous media constituted by the textiles, and the dynamic wetting effects observed with visco ...
In this work, we report a nanofluidic gating mechanism that uses the thermal effect for modulating the ionic transport inside nanofluidic channels. The control of the ionic transport inside a nanochannel is demonstrated using electrical conductivity. A the ...
We seek to study numerically two-phase flow phenomena with phase change through the finite-element method (FEM) and the arbitrary Lagrangian-Eulerian (ALE) framework. This method is based on the so-called one-fluid formulation; thus, only one set of equati ...
In many fields of geotechnical engineering, the modelling of interfaces requires special numerical tools. This paper presents the formulation of a 3D fully coupled hydro-mechanical finite element of interface. The element belongs to the zero-thickness fami ...