Measurement of the atmospheric neutrino energy spectrum from 100 GeV to 400 TeV with IceCube
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
IceCube is a km-scale neutrino observatory under construction at the South Pole with sensors both in the deep ice (InIce) and on the surface (IceTop). The sensors, called Digital Optical Modules (DOMs). detect, digitize and timestamp the signals from optic ...
We present a hadronic model of activity for galactic γ-ray-loud binaries, in which the multi-TeV neutrino flux from the source can be much higher and/or harder than the detected TeV γ-ray flux. This is related to the fact that most neutrinos are produced i ...
We present a study of exclusive neutral pion production in neutrino-nucleus Neutral Current interactions using data from the NOMAD experiment at the CERN SPS. The data correspond to 1.44 × 106 muon-neutrino Charged Current interactions in the energy range ...
Point source searches with the IceCube neutrino telescope have been restricted to one hemisphere, due to the exclusive selection of upward going events as a way of rejecting the atmospheric muon background. We show that the region above the horizon can be ...
We report on a search with the IceCube detector for high-energy muon neutrinos from GRB 080319B, one of the brightest gamma-ray bursts (GRBs) ever observed. The fireball model predicts that a mean of 0.1 events should be detected by IceCube for a bulk Lore ...
A search for diffuse neutrinos with energies in excess of 105 GeV is conducted with AMANDA-II data recorded between 2000 and 2002. Above 107 GeV, the Earth is essentially opaque to neutrinos. This fact, combined with the limited overburden of the AMANDA-II ...