Knowledge graphIn knowledge representation and reasoning, knowledge graph is a knowledge base that uses a graph-structured data model or topology to integrate data. Knowledge graphs are often used to store interlinked descriptions of entities - objects, events, situations or abstract concepts - while also encoding the semantics underlying the used terminology. Since the development of the Semantic Web, knowledge graphs are often associated with linked open data projects, focusing on the connections between concepts and entities.
Semantic WebThe Semantic Web, sometimes known as Web 3.0 (not to be confused with Web3), is an extension of the World Wide Web through standards set by the World Wide Web Consortium (W3C). The goal of the Semantic Web is to make Internet data machine-readable. To enable the encoding of semantics with the data, technologies such as Resource Description Framework (RDF) and Web Ontology Language (OWL) are used. These technologies are used to formally represent metadata. For example, ontology can describe concepts, relationships between entities, and categories of things.
Comparison of relational database management systemsThe following tables compare general and technical information for a number of relational database management systems. Please see the individual products' articles for further information. Unless otherwise specified in footnotes, comparisons are based on the stable versions without any add-ons, extensions or external programs. The operating systems that the RDBMSes can run on. Information about what fundamental RDBMS features are implemented natively. Note (1): Currently only supports read uncommited transaction isolation.
Stored procedureA stored procedure (also termed proc, storp, sproc, StoPro, StoredProc, StoreProc, sp, or SP) is a subroutine available to applications that access a relational database management system (RDBMS). Such procedures are stored in the database data dictionary. Uses for stored procedures include data-validation (integrated into the database) or access-control mechanisms. Furthermore, stored procedures can consolidate and centralize logic that was originally implemented in applications.
Ontology engineeringIn computer science, information science and systems engineering, ontology engineering is a field which studies the methods and methodologies for building ontologies, which encompasses a representation, formal naming and definition of the categories, properties and relations between the concepts, data and entities. In a broader sense, this field also includes a knowledge construction of the domain using formal ontology representations such as OWL/RDF.
In-memory databaseAn in-memory database (IMDB, or main memory database system (MMDB) or memory resident database) is a database management system that primarily relies on main memory for computer data storage. It is contrasted with database management systems that employ a disk storage mechanism. In-memory databases are faster than disk-optimized databases because disk access is slower than memory access and the internal optimization algorithms are simpler and execute fewer CPU instructions.
Relational modelThe relational model (RM) is an approach to managing data using a structure and language consistent with first-order predicate logic, first described in 1969 by English computer scientist Edgar F. Codd, where all data is represented in terms of tuples, grouped into relations. A database organized in terms of the relational model is a relational database.
Automated reasoningIn computer science, in particular in knowledge representation and reasoning and metalogic, the area of automated reasoning is dedicated to understanding different aspects of reasoning. The study of automated reasoning helps produce computer programs that allow computers to reason completely, or nearly completely, automatically. Although automated reasoning is considered a sub-field of artificial intelligence, it also has connections with theoretical computer science and philosophy.
Database modelA database model is a type of data model that determines the logical structure of a database. It fundamentally determines in which manner data can be stored, organized and manipulated. The most popular example of a database model is the relational model, which uses a table-based format. Common logical data models for databases include: Hierarchical database model This is the oldest form of database model. It was developed by IBM for IMS (information Management System), and is a set of organized data in tree structure.