Publication

Relation between susceptibility and Knight shift in La2NiO4.17 and K2NiF4 by Ni-61 NMR

Jacques Van Der Klink
2010
Journal paper
Abstract

The NiO4 plaquettes in La2NiO4.17, a cousin of the hole-doped high-temperature superconductor La2-xSrxCuO4, have been studied by Ni-61 NMR in 14 T in a single crystal enriched in Ni-61. Doped and undoped plaquettes are discriminated by the shift of the NMR resonance, leading to a small line splitting, which hardly depends on temperature or susceptibility. The smallness of the effect is additional evidence for the location of the holes as deduced by Schussler-Langenheine et al. [Phys. Rev. Lett. 95, 156402 (2005)]. The increase in linewidth with decreasing temperature shows a local-field redistribution, consistent with the formation of charge-density waves or stripes. For comparison, we studied, in particular, the grandmother of all planar antiferromagnets K2NiF4 in the paramagnetic state using natural abundant Ni-61. The hyperfine fields in both two-dimensional compounds appear to be remarkably small, which is well explained by super (transferred) hyperfine interaction. In K2NiF4, the temperature dependence of the susceptibility and the Knight shift cannot be brought onto a simple scaling curve. This unique feature is ascribed to a different sensitivity for correlations of these two parameters.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (9)
Temperature
Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied on various reference points and thermometric substances for definition. The most common scales are the Celsius scale with the unit symbol °C (formerly called centigrade), the Fahrenheit scale (°F), and the Kelvin scale (K), the latter being used predominantly for scientific purposes.
Negative temperature
Certain systems can achieve negative thermodynamic temperature; that is, their temperature can be expressed as a negative quantity on the Kelvin or Rankine scales. This should be distinguished from temperatures expressed as negative numbers on non-thermodynamic Celsius or Fahrenheit scales, which are nevertheless higher than absolute zero. The absolute temperature (Kelvin) scale can be understood loosely as a measure of average kinetic energy. Usually, system temperatures are positive.
Thermodynamic temperature
Thermodynamic temperature is a quantity defined in thermodynamics as distinct from kinetic theory or statistical mechanics. Historically, thermodynamic temperature was defined by Lord Kelvin in terms of a macroscopic relation between thermodynamic work and heat transfer as defined in thermodynamics, but the kelvin was redefined by international agreement in 2019 in terms of phenomena that are now understood as manifestations of the kinetic energy of free motion of microscopic particles such as atoms, molecules, and electrons.
Show more
Related publications (34)

Experimental study of stability, quench propagation and detection methods on 15 kA sub-scale HTS fusion conductors in SULTAN

Pierluigi Bruzzone, Kamil Sedlák, Nikolay Bykovskiy, Ortensia Dicuonzo

High-temperature superconductors (HTSs) enable exclusive operating conditions for fusion magnets, boosting their performance up to 20 T generated magnetic fields in the temperature range from 4 K to 20 K. One of the main technological issues of HTS conduct ...
IOP Publishing Ltd2023

Molecular Origin of the Asymmetric Photoluminescence Spectra of CsPbBr3 at Low Temperature

Ursula Röthlisberger, Ariadni Boziki, Mohammad Ibrahim Dar, Gwénolé Jean Jacopin

CsPbBr3 has received wide attention due to its superior emission yield and better thermal stability compared to other organic-inorganic lead halide perovskites. In this study, through an interplay of theory and experiments, we investigate the molecular ori ...
2021

Characterization and Modeling of Mismatch in Cryo-CMOS

Edoardo Charbon, Fabio Sebastiano

This paper presents a device matching study of a commercial 40-nm bulk CMOS technology operated at cryogenic temperatures. Transistor pairs and linear arrays, optimized for device matching, were characterized over the temperature range from 300 K down to 4 ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2020
Show more
Related MOOCs (5)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.