Publication

Bayesian inference from composite likelihoods, with an application to spatial extremes

Anthony Christopher Davison
2012
Journal paper
Abstract

Composite likelihoods are increasingly used in applications where the full likelihood is analytically unknown or computationally prohibitive. Although some frequentist properties of the maximum composite likelihood estimator are akin to those of the maximum likelihood estimator, Bayesian inference based on composite likelihoods is in its early stages. This paper discusses inference when one uses composite likelihood in Bayes' formula. We establish that using a composite likelihood results in a proper posterior density, though it can differ considerably from that stemming from the full likelihood. Building on previous work on composite likelihood ratio tests, we use asymptotic theory for misspecified models to propose two adjustments to the composite likelihood to obtain appropriate inference. We also investigate use of the Metropolis Hastings algorithm and two implementations of the Gibbs sampler for obtaining draws from the composite posterior. We test the methods on simulated data and apply them to a spatial extreme rainfall dataset. For the simulated data, we find that posterior credible intervals yield appropriate empirical coverage rates. For the extreme precipitation data, we are able to both effectively model marginal behavior throughout the study region and obtain appropriate measures of spatial dependence.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.