Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The antiproliferative properties of a group of 13 structurally diverse gold(III) compounds, including six mononuclear gold(III) complexes, five dinuclear oxo-bridged gold(III) complexes, and two organogold(III) compounds, toward several human tumor cell lines were evaluated in vitro using a systematic screening strategy. Initially all compounds were tested against a panel of 12 human tumor cell lines, and the best performers were tested against a larger 36-cell-line panel. Very pronounced antiproliferative properties were highlighted in most cases, with cytotoxic potencies commonly falling in the low micromolar-and even nanomolar-range. Overall, good-to-excellent tumor selectivity was established for at least seven compounds, making them particularly attractive for further pharmacological evaluation. Compare analysis suggested that the observed antiproliferative effects are caused by a variety of molecular mechanisms, in most cases "DNA-independent,'' and completely different from those of platinum drugs. Remarkably, some new biomolecular systems such as histone deacetylase, protein kinase C/staurosporine, mammalian target of rapamycin/rapamycin, and cyclin-dependent kinases were proposed for the first time as likely biochemical targets for the gold(III) species investigated. The results conclusively qualify gold(III) compounds as a promising class of cytotoxic agents, of outstanding interest for cancer treatment, while providing initial insight into their modes of action.
Gerardo Turcatti, Fabien Kuttler, Mathieu Quinodoz, Olivier Michielin
Didier Trono, Laurence Gouzi Abrami, Evaristo Jose Planet Letschert, Julien Léonard Duc, Laia Simo Riudalbas, Sandra Eloise Kjeldsen, Alexandre Coudray, Sagane Dind