Publication

Evolution of an Oxygen Near-Edge X-ray Absorption Fine Structure Transition in the Upper Hubbard Band in alpha-Fe2O3 upon Electrochemical Oxidation

Abstract

Electrochemical oxidation of hematite (alpha-Fe2O3) nanoparticulate films at 600 mV vs Ag+/AgCl in KOH electrolyte forms a species at the hematite surface which causes a new transition in the upper Hubbard band between the Fe(3d)-O(2p) state region and the Fe(4sp)-O(2p) region, as evidenced by oxygen near-edge X-ray absorption fine structure (NEXAFS) spectra. The electrochemical origin of this transition suggests that it is related to a surface state. This transition, not previously observed for pristine alpha-Fe2O3, is at about the same X-ray energy as that of 196 Si-doped Si: Fe2O3. The occurrence of this state coincides with the onset of an oxidative dark current wave at around 535-mV a potential range where the tunneling exchange current has been previously reported to increase by 3 orders of magnitude with the valence band and the transfer coefficient by a factor of 10. Oxidation to only 200 mV does not form such an extra NE.XAFS feature, suggesting that a critical electrochemical potential between 200 and 600 mV is necessary to change the electronic structure of the iron oxide at the surface. A decrease of the surface roughness, as suggested by visual inspection, profilometry, and X-ray reflectivity, points to faceting as the potential structural origin of the surface state.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.