Publication

Flexible polyimide-based force sensor

Abstract

We have realized a flexible force sensor, composed of four redundant capacitors, the operation of which is based on the measurement of a load-induced capacitance change. We use polyimide both as flexible substrate and as elastic dielectric between two levels of finger-shaped aluminum electrodes. In particular we have developed a technology for realization of two-level polyimide microstructures with gentle slopes to facilitate subsequent metallization processes. Thereby, we could improve step coverage and electrical contacting between the two metallization levels, as well as the mechanical stability of the sensor. The smooth polyimide slopes were obtained by combining lithographic resist-reflow techniques with dry etching procedures. We have analytically modeled the sensor's capacitance and its force sensitivity. We have electrically characterized the capacitors using an impedance analyzer and obtained capacitances in the range of 130 pF and a typical force sensitivity of 0.5–1 fF/N, in excellent agreement with our model.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Flexible electronics
Flexible electronics, also known as flex circuits, is a technology for assembling electronic circuits by mounting electronic devices on flexible plastic substrates, such as polyimide, PEEK or transparent conductive polyester film. Additionally, flex circuits can be screen printed silver circuits on polyester. Flexible electronic assemblies may be manufactured using identical components used for rigid printed circuit boards, allowing the board to conform to a desired shape, or to flex during its use.
Electrical resistivity and conductivity
Electrical resistivity (also called volume resistivity or specific electrical resistance) is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity indicates a material that readily allows electric current. Resistivity is commonly represented by the Greek letter ρ (rho). The SI unit of electrical resistivity is the ohm-metre (Ω⋅m).
Electrical connector
Components of an electrical circuit are electrically connected if an electric current can run between them through an electrical conductor. An electrical connector is an electromechanical device used to create an electrical connection between parts of an electrical circuit, or between different electrical circuits, thereby joining them into a larger circuit. Most electrical connectors have a gender - i.e. the male component, called a plug, connects to the female component, or socket.
Show more
Related publications (35)

Pyroresistive response of percolating conductive polymer composites

Claudio Grimaldi

The pyroresistive response of conductive polymer composites (CPCs) has attracted much interest because of its potential applications in many electronic devices requiring a significant responsiveness to changes in external physical parameters such as temper ...
Amer Physical Soc2024

Light Emission and Conductance Fluctuations in Electrically Driven and Plasmonically Enhanced Molecular Junctions

Christophe Marcel Georges Galland, Konstantin Malchow, Wen Chen, Sakthi Priya Amirtharaj

Electrically connected and plasmonically enhanced molecular junctions combine the optical functionalities of high field confinement and enhancement (cavity function), and of high radiative efficiency (antenna function) with the electrical functionalities o ...
Amer Chemical Soc2024

AC loss and electrical resistance of the RW3 diffusion-bonded joint

Vincenzo D'Auria

For the European DEMO fusion reactor, several options of the Toroidal Field (TF) coil design were proposed. The winding of the TF coil option 1 is based on React&Wind (RW), Nb3Sn, graded conductors in order to optimize the amount of superconductor accordin ...
2023
Show more
Related MOOCs (7)
Electrical Engineering I
Découvrez les circuits électriques linéaires. Apprenez à les maîtriser et à les résoudre, dans un premier temps en régime continu puis en régime alternatif.
Electrical Engineering I
Découvrez les circuits électriques linéaires. Apprenez à les maîtriser et à les résoudre, dans un premier temps en régime continu puis en régime alternatif.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.