Publication

Macroporous Materials as Novel Catalysts for Efficient and Controllable Proteolysis

Liang Qiao, Jingjing Wan, Jiawei Tang
2009
Journal paper
Abstract

A novel nanopore based digestion strategy has been developed by directly adding a macroporous material as catalyst to the conventional in-solution reaction system. Without increasing the enzyme or protein concentrations, this simple digestion approach exhibits high proteolysis efficiency and selectivity due to the in situ fast adsorption of both enzymes and proteins from bulk solution into the macropores of the catalysts, where the target substrates and enzymes are greatly concentrated and confined in the nanospace to realize a quick digestion. Based on the electrostatic interaction matching between the biomolecules and catalysts, selective extraction and digestion of proteins with different isoelectric points can be achieved by adjusting the surface charge of the catalysts. This nanoporous reaction system has been successfully applied to the analysis of a complex biological sample, where 293 proteins are identified, while only 100 proteins are obtained by the standard overnight in-solution digestion. The present nanospace confined digestion strategy will lead to promising advances not only in proteomics but also in other applications where enzymatic reactions are involved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (22)
Proteolysis
Proteolysis is the breakdown of proteins into smaller polypeptides or amino acids. Uncatalysed, the hydrolysis of peptide bonds is extremely slow, taking hundreds of years. Proteolysis is typically catalysed by cellular enzymes called proteases, but may also occur by intra-molecular digestion. Proteolysis in organisms serves many purposes; for example, digestive enzymes break down proteins in food to provide amino acids for the organism, while proteolytic processing of a polypeptide chain after its synthesis may be necessary for the production of an active protein.
In-gel digestion
The in-gel digestion step is a part of the sample preparation for the mass spectrometric identification of proteins in course of proteomic analysis. The method was introduced in 1992 by Rosenfeld. Innumerable modifications and improvements in the basic elements of the procedure remain. The in-gel digestion step primarily comprises the four steps; destaining, reduction and alkylation (R&A) of the cysteines in the protein, proteolytic cleavage of the protein and extraction of the generated peptides.
Protease
A protease (also called a peptidase, proteinase, or proteolytic enzyme) is an enzyme that catalyzes proteolysis, breaking down proteins into smaller polypeptides or single amino acids, and spurring the formation of new protein products. They do this by cleaving the peptide bonds within proteins by hydrolysis, a reaction where water breaks bonds. Proteases are involved in many biological functions, including digestion of ingested proteins, protein catabolism (breakdown of old proteins), and cell signaling.
Show more
Related publications (32)

De novo designed proteins: a study in engineering novel folds and functions

Alexandra Krina Van Hall-Beauvais

Proteins control nearly every facet of life on a molecular level. Proteins are formed from linear strings of amino acids, which fold into three-dimensional structures that can enact functions. Evolution has created highly efficient proteins in diverse fold ...
EPFL2023

Organohalide respiration: breakthrough towards the elucidation of the electron-accepting moiety of the respiratory chain

Christof Holliger, Julien Maillard, Adrian Schmid, Lorenzo Cimmino

Background Organohalide respiration (OHR) is a bacterial anaerobic process in which chlorinated compound, e.g. tetrachloroethene (PCE), is used as terminal electron acceptors. Dehalobacter restrictus PER-K23, a paradigmatic organohalide-respiring bacterium ...
2021

Microfluidics and cell-free synthetic biology in the development of new diagnostic and therapeutic platforms

Grégoire Michielin

In phenylketonuria, absence or malfunction of the phenylalanine hydroxylase enzyme results in toxic accumulation of phenylalanine in the body. An injectable recombinant enzyme therapy was recently approved and has the potential to improve the quality of li ...
EPFL2021
Show more