Mn2+ complexes represent an alternative to Gd3+ chelates which are widely used contrast agents in magnetic resonance imaging. In this perspective, the authors studied the Mn2+ complexes of two 12-membered, pyridine-contg. macrocyclic ligands bearing one pendant arm with a carboxylic acid (HL1, 6-carboxymethyl-3,6,9,15-tetraazabicyclo[9.3.1] pentadeca-1(15),11,13-triene) or a phosphonic acid function (H2L2, 6-dihydroxyphosphorylmethyl-3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene). Both ligands were synthesized using nosyl or tosyl amino-protecting groups (starting from diethylenetriamine or tosylaziridine). The x-ray crystal structures confirmed a coordination no. of 6 for Mn2+ in their complexes. In aq. soln., these pentadentate ligands allow one free coordination site for a H2O mol. Potentiometric titrn. data indicated a higher basicity for H2L2 than that for HL1, related to the electron-donating effect of the neg. charged phosphonate group. According to the protonation sequence detd. by 1H and 31P pH-NMR titrns., the 1st two protons are attached to macrocyclic amino groups whereas the subsequent protonation steps occur on the pendant arm. Both ligands form thermodynamically stable complexes with Mn2+, with full complexation at physiol. pH and 1:1 metal to ligand ratio. The kinetic inertness was studied via reaction with excess of Zn2+ under various pHs. The dissocn. of MnL2 is instantaneous (at pH 6). For MnL1, the dissocn. is very fast (kobs = 1-12 × 103 s-1), much faster than that for MnDOTA, MnNOTA, or the Mn2+ complex of the 15-membered analog. It proceeds exclusively via the dissocn. of the monoprotonated complex, without any influence of Zn2+. In aq. soln., both complexes are air-sensitive leading to Mn3+ species, as evidenced by UV-visible and 1H NMRD measurements and x-ray crystallog. Cyclic voltammetry gave low oxidn. peak potentials (Eox = 0.73 V for MnL1 and Eox = 0.68 V for MnL2), in accordance with air-oxidn. The parameters governing the relaxivity of the Mn2+ complexes were detd. from variable-temp. 17O NMR and 1H NMRD data. The H2O exchange is extremely fast, kex = 3.03 and 1.77 × 109 s-1 for MnL1 and MnL2, resp. Variable-pressure 17O NMR measurements were performed to assess the H2O exchange mechanism on MnL1 and MnL2 as well as on other Mn2+ complexes. The neg. activation vols. for both MnL1 and MnL2 complexes confirmed an associative mechanism of the H2O exchange as expected for a hexacoordinated Mn2+ ion. The hydration no. of q = 1 was confirmed for both complexes by 17O chem. shifts. A relaxometric titrn. with phosphate, carbonate or citrate excluded the replacement of the coordinated H2O mol. by these small endogenous anions.
Kay Severin, Farzaneh Fadaei Tirani, Sylvain Alexandre Marie Sudan
Kay Severin, Farzaneh Fadaei Tirani, Damien Wen Chen, Jean Charles Edouard de Montmollin, Atena-Bianca Solea
Paul Joseph Dyson, Farzaneh Fadaei Tirani, Mouna Hadiji