Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: a numerical comparison
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A new method for solving numerically stochastic partial differential equations (SPDEs) with multiple scales is presented. The method combines a spectral method with the heterogeneous multiscale method (HMM) presented in [W. E, D. Liu, E. Vanden-Eijnden, An ...
The Chu construction is used to define a *-autonomous structure on a category of complete atomistic coatomistic lattices. This construction leads to a new tensor product that is compared with a certain number of other existing tensor products. ...
An analysis of a multiscale symmetric interior penalty discontinuous Galerkin finite element method for the numerical discretization of elliptic problems with multiple scales is proposed. This new method, first described in [A. Abdulle, C.R. Acad. Sci. Par ...
Among the efficient numerical methods based on atomistic models, the quasi-continuum (QC) method has attracted growing interest in recent years. The QC method was first developed for crystalline materials with Bravais lattice and was later extended to mult ...
A new finite element method for the efficient discretization of elliptic homogenization problems is proposed. These problems, characterized by data varying over a wide range of scales cannot be easily solved by classical numerical methods that need mesh re ...
This article proposes a numerical model for microfluidic two-phase flows in flat channels, also called Hele-Shaw cells. The initially three-dimensional problem is simplified to two-dimensions by depth averaging in the thin direction. The 2D partial differe ...
In part I of this two-paper series, a method for the localization of an impact using dynamic strain signals from fiber Bragg grating (FBG) sensors is presented. In this paper, an inverse numerical-experimental method allowing to identify the damage based o ...
We consider the development of efficient and fast computational methods for parametrized electromagnetic scattering problems involving many scattering three dimensional bodies. The parametrization may describe the location, orientation, size, shape and num ...
Engineers rely on efficient simulations that provide them with reliable data in order to make proper engineering design decisions. The purpose of this thesis is to design adaptive numerical methods for multiscale problems in this spirit. We consider ellipt ...