Publication

Efficiently Maintaining Distributed Model-Based Views on Real-Time Data Streams

Abstract

Minimizing communication cost is a fundamental problem in large-scale federated sensor networks. Maintaining model-based views of data streams has been highlighted because it permits efficient data communication by transmitting parameter values of models, instead of original data streams. We propose a framework that employs the advantages of using model-based views for communication-efficient stream data processing over federated sensor networks, yet it significantly improves state-of-the-art approaches. The framework is generic and any time-parameterized models can be plugged, while accuracy guarantees for query results are ensured throughout the large-scale networks. In addition, we boost the performance of the framework by the coded model update that enables efficient model update from one node to another. It predetermines parameter values for the model, updates only identifiers of the parameter values, and compresses the identifiers by utilizing bitmaps. Moreover, we propose a correlation model, named coded inter-variable model, that merges the efficiency of the coded model update with that of correlation models. Empirical studies with real data demonstrate that our proposal achieves substantial amounts of communication reduction, outperforming state-of-the art methods.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.