**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Evidence for a Peierls phase-transition in a three-dimensional multiple charge-density waves solid

Abstract

The effect of dimensionality on materials properties has become strikingly evident with the recent discovery of graphene. Charge ordering phenomena can be induced in one dimension by periodic distortions of a material's crystal structure, termed Peierls ordering transition. Charge-density waves can also be induced in solids by strong coulomb repulsion between carriers, and at the extreme limit, Wigner predicted that crystallization itself can be induced in an electrons gas in free space close to the absolute zero of temperature. Similar phenomena are observed also in higher dimensions, but the microscopic description of the corresponding phase transition is often controversial, and remains an open field of research for fundamental physics. Here, we photoinduce the melting of the charge ordering in a complex three-dimensional solid and monitor the consequent charge redistribution by probing the optical response over a broad spectral range with ultrashort laser pulses. Although the photoinduced electronic temperature far exceeds the critical value, the charge-density wave is preserved until the lattice is sufficiently distorted to induce the phase transition. Combining this result with ab initio electronic structure calculations, we identified the Peierls origin of multiple charge-density waves in a three-dimensional system for the first time.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related publications (22)

Loading

Loading

Loading

Related concepts (16)

Ultrashort pulse

In optics, an ultrashort pulse, also known as an ultrafast event, is an electromagnetic pulse whose time duration is of the order of a picosecond (10−12 second) or less. Such pulses have a bro

Phase transition

In chemistry, thermodynamics, and other related fields, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is use

Fermi gas

A Fermi gas is an idealized model, an ensemble of many non-interacting fermions. Fermions are particles that obey Fermi–Dirac statistics, like electrons, protons, and neutrons, and, in general, parti

Molecular spectroscopy is an essential experimental technique in both fundamental physical sciences and applied research. For example, electronic spectroscopy, in which light induces a change in the electronic state of a molecule, is a powerful tool for studying light-matter interactions appearing in solar energy conversion and light-emitting devices. To explain experimental findings and compare them with theoretical predictions, scientists often compute properties that can only be inferred indirectly, rather than simulating the observed spectroscopic signals. This is partly due to challenges associated with the simulation of electronic spectra, which requires both an accurate description of the electronic structure and the quantum-dynamical treatment of the motion of atomic nuclei. As the exact methods to solve the underlying quantum-mechanical problem scale exponentially with the number of atoms, this task must be performed approximately for all but the smallest molecules.
In this thesis, we develop a set of methods to systematically study the effects of different approximations on the computed spectra. As our starting point, we consider a semiclassical method called the thawed Gaussian approximation, which has resurfaced in recent years as an efficient and robust alternative to simple but crude models or highly accurate but costly quantum dynamics methods. First, we present several practical improvements of the method, such as generalization to non-Condon effects or the efficient single-Hessian version, which enable a broader set of molecules to be studied. Second, we introduce a more fundamental modification of the methods - the inclusion of non-zero temperature effects. The underlying theory, which is inspired by the concept of so-called thermo-field dynamics, is exact and applies to any quantum dynamics method. Remarkably, within the thawed Gaussian approximation, the inclusion of non-zero temperature comes at nearly no additional computational cost.
These methods, developed originally for steady-state linear spectra, are then employed to compute state-of-the-art, time-resolved spectra, which are typically measured with ultrashort laser pulses. More precisely, we study how the anharmonicity of the potential energy surfaces and mode-mode (Duschinsky) couplings affect pump-probe and two-dimensional electronic spectra. This approach, based on the thawed Gaussian wavepacket propagation, is the first method that can exactly evaluate the nonlinear electronic spectra of many-dimensional, shifted, distorted, and Duschinsky-rotated harmonic potentials. As in the case of linear absorption and emission spectra, we again use the concept of thermo-field dynamics to include non-zero temperature effects in the simulation of two-dimensional electronic spectra. The resulting wavepacket picture of two-dimensional spectroscopy at arbitrary temperature could strongly impact how we interpret and simulate multidimensional spectra in the future.

Water is ubiquitous on Earth, playing a critical role for a plethora of structures, processes and chemical reactions in nature. Its unique physicochemical properties originate mainly from its hydrogen bond network. Despite its recognized importance, many aspects of the structure of water as a liquid remain elusive. It is especially difficult to understand the complex nature of fluctuations and ordering in pure water, or to get a complete picture of aqueous interfaces at the molecular level. In this thesis, our aim is to improve our understanding of the underlying interactions between water and ions, macromolecules, and interfaces, especially the long range interactions. To this aim, we use two nonlinear optical techniques, second harmonic scattering (SHS) and vibrational sum frequency scattering (SFS), on liquid water as well as on model lipid membranes mimicking the cell membranes.We investigate with SHS how the orientational ordering of water molecules is affected by temperature changes and nuclear quantum effects. Scattering measurements of pure water reveal that the intermolecular correlations undergo a symmetry transformation with increasing temperature. On the other hand, with increasing temperature, aqueous electrolyte solutions exhibit a diminished influence of the combined electrostatic field on the water- water correlations. This trend is predicted qualitatively by a Debye-Hückel model, but not quantitatively due to its non-inclusion of hydrogen bonding and nuclear quantum effects. These insights facilitate the elaboration of future nuclear quantum mechanical models of water.The same interactions are further studied by a comparison of pure liquid water and pure liquid carbon tetrachloride. SHS measurements and simulations reveal that transient nanoscale voids exist in water and carbon tetrachloride. The coherent SHS emissions observed in water are generated by charge density fluctuations around the cavities. These measurements strongly hint towards non-uniformity in the structure of water, on femtosecond timescale and nanometric range.Next, we turn towards the structure of water around model lipid membranes. We explore first the three-dimensional confinement of liquid water inside liposomes of various size. By analyzing SHS patterns of zwitterionic and anionic liposomes, we observe that the effect of confinement is visible on a range of a hundred nanometers, larger compared to the previously reported ranges on the order of a nanometer or about ten nanometers. The water orientational ordering at the interface as well as the surface potential of the liposomes are retrieved with a nonlinear light scattering modeling, showing that the confinement effect is mainly attributable to the hydrogen bond network. The effect is in particular 8 times larger for light water than for heavy water.Finally, we investigate how the water structure is modified around lipid monolayers and bilayers. The hydration of lipid membranes is asymmetric with respect to charge. SHS and vibrational SFS reveal that the charge hydration asymmetry is drastically different depending on the nature of the lipid layer. It depends on a delicate balance between electrostatic and hydrogen bonding interactions. The charge hydration asymmetry is further modified by the presence of charges on the lipid headgroups on both sides of the bilayers.

The goal of this thesis is to explore the "neglected" third dimension of layered materials, by studying the interlayer charge dynamics through dc conductivity, optical spectroscopy and ab-initio calculations. This project was designed to respond to the growing interest in layered materials and heterostructures. It is today evident that new properties originate by the interaction between neighbouring atomic planes, but the magnitude of the interlayer coupling has so far been poorly investigated. Reliable and reproducible experiments, in particular for dc conductivity, are today made possible thanks to the recent advancements in the field of materials microfabrication through focused ion beam. In the case of this thesis, it enabled me to review long-standing scientific paradigms and verify that previous experimental results differ by more than 2 orders of magnitude from the intrinsic material property.
The subjects of study are metallic layered transition metal chalcogenides, as they offer a very flexible playground of crystalline structure and physical properties. The discussion will start in Chapter 3, where we will discuss the case of simple layered metals (2H-NbSe2, 2H-TaS2) or semimetal (ZrTe5), for which the anisotropic transport properties can be accurately predicted by their simple band structure calculation and Fermi surface topology. The anisotropic response will be treated in a more general term by considering the effective number of carriers which contributes to charge transport along a specific direction.
The discussion will continue by looking at the peculiar properties of 1T-TaS2, a prominent layered material for the rich set of charge density waves reconstruction, and the presence of a low temperature metal-insulator transition. Recent results from band structure calculations, photoemission spectroscopy and X-ray diffraction, on the contrary, suggests that strong interlayer interactions need to be accounted to justify the observed properties of this material. The experimental results in this thesis provide a clear evidence from transport properties in support of this new interpretation of a layered material where physical properties are strongly dictated by the way different layers interact with each other. This counterintuitive result is regarded as the consequence of the intertwined relation between the charge density wave and the orbital character of the conduction electrons bands, producing a c-axis oriented orbital texture.
The weak bond that holds together the crystalline planes in layered materials also creates the perfect condition for intercalation, or the growth of compounds with different crystalline layers stacked together, creating a natural heterostructure. We will explore the new physical properties that emerged in layered transition metal dichalcogenides when different layers are combined together to form a natural heterostructure, or when magnetic ions are intercalated. Surprising results are reported from the studies of interlayer conduction properties. The interaction between the different types of layers in the natural heterostructure of 4Hb-TaS2, influences the charge density wave and superconducting properties. In this situation, the conduction mechanism is highly anisotropic. In Chapter 6 we will see how conduction anisotropy is affected by the specific long-range magnetic order produced by the intercalated atoms.