Publication

Cerebral glutamine metabolism under hyperammonemia determined in vivo by localized H-1 and N-15 NMR spectroscopy

Abstract

Brain glutamine synthetase (GS) is an integral part of the glutamate-glutamine cycle and occurs in the glial compartment. In vivo Magnetic Resonance Spectroscopy (MRS) allows noninvasive measurements of the concentrations and synthesis rates of metabolites. N-15 MRS is an alternative approach to C-13 MRS. Incorporation of labeled N-15 from ammonia in cerebral glutamine allows to measure several metabolic reactions related to nitrogen metabolism, including the glutamate-glutamine cycle. To measure N-15 incorporation into the position 5N of glutamine and position 2N of glutamate and glutamine, we developed a novel N-15 pulse sequence to simultaneously detect, for the first time, [5-N-15] Gln and [2-N-15]Gln + Glu in vivo in the rat brain. In addition, we also measured for the first time in the same experiment localized H-1 spectra for a direct measurement of the net glutamine accumulation. Mathematical modeling of H-1 and N-15 MRS data allowed to reduce the number of assumptions and provided reliable determination of GS (0.30 +/- 0.050 mu mol/g per minute), apparent neurotransmission (0.26 +/- 0.030 mu mol/g per minute), glutamate dehydrogenase (0.029 +/- 0.002 mu mol/g per minute), and net glutamine accumulation (0.033 +/- 0.001 mu mol/g per minute). These results showed an increase of GS and net glutamine accumulation under hyperammonemia, supporting the concept of their implication in cerebral ammonia detoxification. Journal of Cerebral Blood Flow & Metabolism (2012) 32, 696-708; doi:10.1038/jcbfm.2011.173; published online 14 December 2011

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (37)
Glutamine
Glutamine (symbol Gln or Q) is an α-amino acid that is used in the biosynthesis of proteins. Its side chain is similar to that of glutamic acid, except the carboxylic acid group is replaced by an amide. It is classified as a charge-neutral, polar amino acid. It is non-essential and conditionally essential in humans, meaning the body can usually synthesize sufficient amounts of it, but in some instances of stress, the body's demand for glutamine increases, and glutamine must be obtained from the diet.
In vivo magnetic resonance spectroscopy
In vivo magnetic resonance spectroscopy (MRS) is a specialized technique associated with magnetic resonance imaging (MRI). Magnetic resonance spectroscopy (MRS), also known as nuclear magnetic resonance (NMR) spectroscopy, is a non-invasive, ionizing-radiation-free analytical technique that has been used to study metabolic changes in brain tumors, strokes, seizure disorders, Alzheimer's disease, depression, and other diseases affecting the brain. It has also been used to study the metabolism of other organs such as muscles.
Glutamic acid
Glutamic acid (symbol Glu or E; the ionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a non-essential nutrient for humans, meaning that the human body can synthesize enough for its use. It is also the most abundant excitatory neurotransmitter in the vertebrate nervous system. It serves as the precursor for the synthesis of the inhibitory gamma-aminobutyric acid (GABA) in GABAergic neurons. Its molecular formula is C5H9NO4.
Show more
Related publications (43)

Development and applications of hyperpolarized 13C and 1H MR spectroscopy of cerebral metabolism at ultra-high field

Emmanuelle Ines Flatt

This thesis is composed of four studies centered on investigating cerebral metabolism using magnetic resonance spectroscopy (MRS) of hyperpolarized and non-hyperpolarized compounds at ultra-high field. In the first two chapters, we studied longitudinally t ...
EPFL2021

Magnetic Resonance Spectroscopy in Schizophrenia: Evidence for Glutamatergic Dysfunction and Impaired Energy Metabolism

Lijing Xin, João Miguel das Neves Duarte

In the past couple of decades, major efforts were made to increase reliability of metabolic assessments by magnetic resonance methods. Magnetic resonance spectroscopy (MRS) has been valuable for providing in vivo evidence and investigating biomarkers in ne ...
2019

Alterations of Brain Energy Metabolism in Type 2 Diabetic Goto-Kakizaki Rats Measured In Vivo by (13)C Magnetic Resonance Spectroscopy

Rolf Gruetter, João Miguel das Neves Duarte, Sarah Catherine Sonnay, Freya-Merret Girault

Type 2 diabetes (T2D) is associated with deterioration of brain structure and function. Here, we tested the hypothesis that T2D induces a reorganization of the brain metabolic networks that support brain function. For that, alterations of neuronal and glia ...
2019
Show more
Related MOOCs (12)
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.