Overview of the ITER EC H&CD system and its capabilities
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Four ITER EC H&CD (Electron Cyclotron Heating and Current Drive) Upper Launchers will be installed in the ITER Tokamak to counteract plasma instabilities by injection of up to 20 MW of millimeter-wave power at 170 GHz. Each Launcher features a structural s ...
DIII-D experiments yield the first proof-of-principle results in feedback control of the proximity to the resistive wall mode (RWM) stability boundary using an active MHD spectroscopic stability measurement and neutral beam injection heating. In contrast t ...
Advanced tokamak operation in ITER, such as the steady-state and hybrid modes, requires an active realtime feedback control of plasma profiles to achieve the advanced regimes for sustained operation. In this work, we have explored a potentially robust cont ...
The tokamak à configuration variable (TCV) is unique in its ability to create a variety of plasma shapes and to heat the electron population in high density regimes using microwave power at the third harmonic of the electron cyclotron frequency. In the fra ...
Energy is essential for human existence and our future depends on plentiful and accessible sources of energy. The world population is fast growing and the average energy used per capita increases. One of the greatest challenges for human beings is that of ...
Fast ions were analysed in experiments focusing on fundamental He-3 minority and mode conversion (MC) in the ion cyclotron resonance range of frequencies (ICRF) in H plasmas and on second harmonic heating of He-3 ions at 2.65 T mimicking D-T plasma heating ...
Stable, high-performance operation of a tokamak requires several plasma control problems to be handled simultaneously. Moreover, the complex physics which governs the tokamak plasma evolution must be studied and understood to make correct choices in contro ...
Numerical modelling of the effects of ion cyclotron resonance heating (ICRH) on the stability of the internal kink mode suggests that ICRH should be considered as an essential sawtooth control tool in ITER. Sawtooth control using ICRH is achieved by direct ...
The ITER Plasma Control System (PCS) requires an extensive set of about 50 diagnostic systems to measure the plasma response and about 20 actuators to act on the plasma to carry out its control functions. The specifications and real limitations of the actu ...
A detailed experiment-theory comparison reveals that linear ideal MHD theory is in quantitative agreement with external magnetic and internal soft x-ray measurements of the plasma response to externally applied non-axisymmetric fields over a broad range of ...