Heavily-hydrated lithic clasts in CH chondrites and the related, metal-rich chondrites Queen Alexandra Range 94411 and Hammadah al Hamra 237
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Pristine meteoritic materials carry light element isotopic fractionations that constrain physiochemical conditions during solar system formation. Here we report the discovery of a unique xenolith in the metal-rich chondrite Isheyevo. Its fine-grained, high ...
Planetesimal were the first planetary objects to form in the solar system, which later grew to make the proto-planets. Most of these bodies were differentiated as a result of internal heating. Several differentiated bodies have, then, been accreted followi ...
Identifying extant materials that act as compositional proxies for Earth is key to understanding its accretion. Copper and sulfur are both moderately volatile elements; however, they display different geochemical behavior (e.g., phase affinities). Thus, in ...
Aims. We present a spectroscopic study of the dynamics of the ionized and neutral gas throughout the Lagoon nebula (M 8), using VLT-FLAMES data from the Gaia-ESO Survey. The new data permit exploration of the physical connections between the nebular gas an ...
The Almahata Sitta MS-170 ureilite (a piece of a breccia originating from the asteroid, 2008 TC3) consists mainly of olivine, with many diamond and graphite grains existing between the olivine grains. The occurrences of the diamonds are unique; i.e., (i) s ...
Insoluble organic matter (IOM) in primitive carbonaceous meteorites has preserved its chemical composition and isotopic heterogeneity since the solar system formed similar to 4.567 billion years ago. We have identified the carrier moieties of isotopically ...
Planetary formation models show that terrestrial planets are formed by the accretion of tens of Moon-to Mars-sized planetary embryos through energetic giant impacts. However, relics of these large proto-planets are yet to be found. Ureilites are one of the ...
Inner solar system bodies, including the Earth, Moon, and asteroids, are depleted in volatile elements relative to chondrites. Hypotheses for this volatile element depletion include condensation from the solar nebula and volatile loss during energetic impa ...
Thulium is a heavy rare earth element (REE) whose geochemical behavior is intermediate between Er and Yb, and that is not expected to be decoupled from these elements during accretion of planetary bodies and geological processes. However, irregularities in ...
The Howardite-Eucrite-Diogenite (HED) suite is a family of differentiated meteorites that provide a unique opportunity to study the differentiation of small bodies. The likely parent-body of this meteorite group, (4) Vesta is presently under study by the D ...