A Fully Integrated 0.18-um CMOS Transceiver Chip for X-Band Phased-Array Systems
Related publications (48)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This paper presents a continuous voltage and frequency scaling approach achieving lower transition (both energy and time) overheads implied by changing voltage levels, at a very low power dissipation and silicon area cost for multi-processor systems with i ...
Today's world of electronics becomes more and more digital and therefore CMOS becomes the dominant technology. A CMOS process compared to a bipolar process offers several advantages, mainly a low power consumption which is important for portable systems po ...
Systems-on-Chip (SoC) design involves several challenges, stemming from the extreme miniaturization of the physical features and from the large number of devices and wires on a chip. Since most SoCs are used within embedded systems, specific concerns are i ...
Networks on Chips (NoCs) have evolved as the communication design paradigm of future Systems on Chips (SoCs). In this work we target the NoC design of complex SoCs with heterogeneous processor/memory cores, providing Quality-of-Service (QoS) for the applic ...
A miniaturized and fully integrated probe for analytical assays based on electrochemiluminescence (ECL) is proposed. It combines both, the electrode transducer and the photodetector in a single 5x6 mm2 silicon chip. The device accommodates two identical ce ...
The substrate noise coupling problems in today's complex mixed-signal system-on-chip (MS-SOC) brings a new set of challenges for designers. In this paper, we propose a global methodology that includes an early verification in the design flow as well as a p ...
Systems-on-Chip (SoCs) are heterogeneous by nature as they may integrate digital, analog, RF hardware as well as software components or non electrical parts such as sensors or actuators. The increasing level of complexity for designing SoCs in a reasonable ...
The limited scalability of current bus topologies for systems on chips (SoCs) dictates the adoption of networks on chips (NoCs) as a scalable interconnection scheme. Current SoCs are highly heterogeneous in nature, denoting homogeneous, preconfigured NoCs ...