Neighbourhood (graph theory)In graph theory, an adjacent vertex of a vertex v in a graph is a vertex that is connected to v by an edge. The neighbourhood of a vertex v in a graph G is the subgraph of G induced by all vertices adjacent to v, i.e., the graph composed of the vertices adjacent to v and all edges connecting vertices adjacent to v. The neighbourhood is often denoted N_G (v) or (when the graph is unambiguous) N(v). The same neighbourhood notation may also be used to refer to sets of adjacent vertices rather than the corresponding induced subgraphs.
Rough setIn computer science, a rough set, first described by Polish computer scientist Zdzisław I. Pawlak, is a formal approximation of a crisp set (i.e., conventional set) in terms of a pair of sets which give the lower and the upper approximation of the original set. In the standard version of rough set theory (Pawlak 1991), the lower- and upper-approximation sets are crisp sets, but in other variations, the approximating sets may be fuzzy sets. The following section contains an overview of the basic framework of rough set theory, as originally proposed by Zdzisław I.
Harmonious coloringIn graph theory, a harmonious coloring is a (proper) vertex coloring in which every pair of colors appears on at most one pair of adjacent vertices. It is the opposite of the complete coloring, which instead requires every color pairing to occur at least once. The harmonious chromatic number χ_H(G) of a graph G is the minimum number of colors needed for any harmonious coloring of G. Every graph has a harmonious coloring, since it suffices to assign every vertex a distinct color; thus χ_H(G) ≤ .
PropertyProperty is a system of rights that gives people legal control of valuable things, and also refers to the valuable things themselves. Depending on the nature of the property, an owner of property may have the right to consume, alter, share, redefine, rent, mortgage, pawn, sell, exchange, transfer, give away, or destroy it, or to exclude others from doing these things, as well as to perhaps abandon it; whereas regardless of the nature of the property, the owner thereof has the right to properly use it under the granted property rights.
Universal setIn set theory, a universal set is a set which contains all objects, including itself. In set theory as usually formulated, it can be proven in multiple ways that a universal set does not exist. However, some non-standard variants of set theory include a universal set. Many set theories do not allow for the existence of a universal set. There are several different arguments for its non-existence, based on different choices of axioms for set theory. In Zermelo–Fraenkel set theory, the axiom of regularity and axiom of pairing prevent any set from containing itself.
Acyclic coloringIn graph theory, an acyclic coloring is a (proper) vertex coloring in which every 2-chromatic subgraph is acyclic. The acyclic chromatic number A(G) of a graph G is the fewest colors needed in any acyclic coloring of G. Acyclic coloring is often associated with graphs embedded on non-plane surfaces. A(G) ≤ 2 if and only if G is acyclic. Bounds on A(G) in terms of Δ(G), the maximum degree of G, include the following: A(G) ≤ 4 if Δ(G) = 3. A(G) ≤ 5 if Δ(G) = 4. A(G) ≤ 7 if Δ(G) = 5. A(G) ≤ 12 if Δ(G) = 6.
Fuzzy setIn mathematics, fuzzy sets (a.k.a. uncertain sets) are sets whose elements have degrees of membership. Fuzzy sets were introduced independently by Lotfi A. Zadeh in 1965 as an extension of the classical notion of set. At the same time, defined a more general kind of structure called an L-relation, which he studied in an abstract algebraic context. Fuzzy relations, which are now used throughout fuzzy mathematics and have applications in areas such as linguistics , decision-making , and clustering , are special cases of L-relations when L is the unit interval [0, 1].
Set-builder notationIn set theory and its applications to logic, mathematics, and computer science, set-builder notation is a mathematical notation for describing a set by enumerating its elements, or stating the properties that its members must satisfy. Defining sets by properties is also known as set comprehension, set abstraction or as defining a set's intension. Set (mathematics)#Roster notation A set can be described directly by enumerating all of its elements between curly brackets, as in the following two examples: is the set containing the four numbers 3, 7, 15, and 31, and nothing else.
Independent set (graph theory)In graph theory, an independent set, stable set, coclique or anticlique is a set of vertices in a graph, no two of which are adjacent. That is, it is a set of vertices such that for every two vertices in , there is no edge connecting the two. Equivalently, each edge in the graph has at most one endpoint in . A set is independent if and only if it is a clique in the graph's complement. The size of an independent set is the number of vertices it contains. Independent sets have also been called "internally stable sets", of which "stable set" is a shortening.
Property lawProperty law is the area of law that governs the various forms of ownership in real property (land) and personal property. Property refers to legally protected claims to resources, such as land and personal property, including intellectual property. Property can be exchanged through contract law, and if property is violated, one could sue under tort law to protect it. The concept, idea or philosophy of property underlies all property law.