Publication

Identification of a high concentration of scyllo-inositol in the brain of a healthy human subject using 1H- and 13C-NMR

Rolf Gruetter
1998
Journal paper
Abstract

The peak at 3.35 ppm in the 1H-NMR spectrum characteristic for scyllo- inositol may be a marker for cerebral pathology, although it has a well- known constant concentration relative to myo-inositol. Such a peak was observed with an intensity at least 300% above normal in the brain of a healthy volunteer. The scyllo-inositol signal was assigned based on the detection of a corresponding peak at 74.5 ppm in the 13C-NMR spectrum and on the demonstration of singlet characteristics of the proton signal. The presence of substantial brain concentrations of scyllo-inositol suggests that scyllo-inositol metabolism may be regulated independently from myo-inositol and that such concentrations are compatible with normal health.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (30)
Inositol
Inositol, or more precisely myo-inositol, is a carbocyclic sugar that is abundant in the brain and other mammalian tissues; it mediates cell signal transduction in response to a variety of hormones, neurotransmitters, and growth factors and participates in osmoregulation. It is a sugar alcohol with half the sweetness of sucrose (table sugar). It is made naturally in the human body from glucose. A human kidney makes about two grams per day.
Nuclear magnetic resonance spectroscopy
Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy.
Brain
A brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It is located in the head, usually close to the sensory organs for senses such as vision. It is the most complex organ in a vertebrate's body. In a human, the cerebral cortex contains approximately 14–16 billion neurons, and the estimated number of neurons in the cerebellum is 55–70 billion. Each neuron is connected by synapses to several thousand other neurons.
Show more
Related publications (32)

Robust gamma-aminobutyric acid and energy metabolism measurements by proton and phosphorus magnetic resonance spectroscopy and fingerprinting

Songi Lim

Magnetic resonance spectroscopy (MRS) is the only technique that can detect endogenous metabolites directly and non-invasively in vivo. It allows to identify different metabolites and analyze the dynamic neurochemical processes in the brain, skeletal muscl ...
EPFL2023

Advanced metabolite mapping at ultra-high field using 1H-MRS, 1H-MRSI and macromolecules: applications in a rat model of type C hepatic encephalopathy

Dunja Simicic

Magnetic Resonance Spectroscopy (MRS) is the only technique capable of measuring a large number of metabolites simultaneously in vivo. Ultra-high magnetic fields (UHF) combined with ultra-short echo time (TE) sequences allow the detection of high-quality 1 ...
EPFL2022

Development and applications of hyperpolarized 13C and 1H MR spectroscopy of cerebral metabolism at ultra-high field

Emmanuelle Ines Flatt

This thesis is composed of four studies centered on investigating cerebral metabolism using magnetic resonance spectroscopy (MRS) of hyperpolarized and non-hyperpolarized compounds at ultra-high field. In the first two chapters, we studied longitudinally t ...
EPFL2021
Show more
Related MOOCs (13)
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.