An Endohedral Single-Molecule Magnet with Long Relaxation Times: DySc_{2}N@C_{80}
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Spin resonance provides the high-energy resolution needed to determine biological and material structures by sensing weak magnetic interactions(1). In recent years, there have been notable achievements in detecting(2) and coherently controlling(3-7) indivi ...
The majority of interactions in solids strongly depend on the interatomic distances. The application of pressure changes the lattice parameters and modifies the electronic and the phononic energy spectra of a material avoiding some of the undesirable effec ...
The time-window for processing electron spin information (spintronics) in solid-state quantum electronic devices is determined by the spin-lattice and spin-spin relaxation times of electrons. Minimizing the effects of spin-orbit coupling and the local magn ...
Collective magnetic excitations are a fascinating aspect of condensed matter physics, where neutron scattering can provide valuable insight into the magnetic properties of physical realisations of model systems. This thesis focuses on the excitation spectr ...
The AC loss measurements of the high temperature superconductor (HTS) cable prototype in the EDIPO test facility motivated detailed investigations of the loss contributions from the tape, strand and cable stages of the HTS fusion conductor design proposed ...
High-temperature superconductivity in cuprates emerges as one out of many electronic phases when doping the antiferromagnetic Mott insulator La2CuO4 away from half lling. The description of the superconducting phase is therefore complicated by intertwined ...
Many exotic metallic systems have a resistivity that varies linearly with temperature, and the physics behind this is thought to be connected to high-temperature superconductivity in the cuprates and iron pnictides1,2,3,4,5,6,7,8,9. Although this phenomeno ...
We report on the magnetic properties of Fe and Co adatoms on a Cu2N/Cu(100)-c(2 x 2) surface investigated by x-ray magnetic dichroism measurements and density functional theory (DFT) calculations including the local coulomb interaction. We compare these re ...
The suppression of magnetic order with pressure concomitant with the appearance of pressure-induced superconductivity was recently discovered in CrAs. Here we present a neutron diffraction study of the pressure evolution of the helimagnetic ground state to ...
The interplay of superconductivity and magnetism is investigated for systems with dimensions ranging from the mesoscopic to the atomic scale by scanning tunneling microscopy (STM) at millikelvin temperatures and by numerical calculations. Based on geometri ...